セミナー・シンポジウム

HiSORセミナー

Introduction to the contrarian usage of two-dimensional photoelectron spectroscopy
光電子分光詳論:DIANAとKREIOSの天邪鬼な使い方

日時 2021年6月28日 (月) 13:00-14:10頃
場所 オンライン(Zoom形式)
講師 Fumihiko Matsui
(UVSOR Synchrotron Facility, Institute for Molecular Science)

Based on the conservation principles of energy, momentum, and angular momentum in the photoelectron emission process, a rich variety of information on the electronic and atomic structures of solids and their surfaces can be extracted from momentum-resolved photoelectron spectroscopy and photoelectron diffraction [1]. Two-dimensional (2D) projection electron analyzers are efficient for measuring photoelectron intensity angle distribution (PIAD) patterns. We have developed various projection-type analyzers [2-4]. The display-type spherical mirror analyzer (DIANA) is a unique device that enabled stereo viewing of atomic arrangements [5-7]. The momentum microscope (MM) is a comprehensive machine for photoelectron micro-spectroscopy and spectro-microscopy [8-10]. KREIOS is the first state-of-the-art MM installed at a synchrotron facility in Japan [11-13]. Transition matrix element analysis for atomic orbital characterization and photoelectron holography for atomic arrangement visualization are typical applications of 2D photoelectron spectroscopy. Furthermore, the most fun part is the combination of diffraction and spectroscopy techniques at the core-valence resonant condition [14-16]. Resonant momentum-resolved photoelectron diffraction / spectroscopy is yet a challenging field that opens the door to atomic-site-, elemental-, and orbital-selective electronic structure analyses.

References

[1] 「光電子分光詳論」 松井文彦、松下智裕、大門寛 丸善 (2020). [2] H. Matsuda & FM JJAP, 59, 046503 (2020). [3] H. Matsuda & FM JESRP 245, 147001 (2020). [4] FM & H. Matsuda, RSI 92, (2021) in print. [5] H. Daimon RSI 59, 545 (1998). [6] H. Daimon PRL 86 2034 (2001). [7] FM et al. JPSJ 87, 061004 (2018). [8] M. Kotsugi et al. RSI 74, 2754 (2003). [9] C. Tusche et al. Ultramicroscopy 206, 112815 (2019). [10] D. Kutnyakhov et al. RSI 91, 013109 (2020). [11] FM et al. JJAP 59, 067001 (2020). [12] S. Makita et al. eJSSNT 19, 42 (2021). [13] FM et al. 表面真空学会誌 64, 262 (2021). [14] FM et al. PRL 100, 207201 (2008). [15] FM et al. PRL 114, 15501 (2015). [16] FM et al. in preparation.

問合せ先 出田真一郎(放射光科学研究センター)