

HiSOR ACTIVITY REPORT

2018

Hiroshima Synchrotron Radiation Center, HiSOR Hiroshima University

Edited by Y. Izumi

The annual report is available from

Hiroshima Synchrotron Radiation Center, Hiroshima University Kagamiyama 2-313, Higashi-Hiroshima 739-0046, JAPAN

> Phone: +81-82-424-6293 Fax: +81-82-424-6294 e-mail: hisor@hiroshima-u.ac.jp URL: http://www.hsrc.hiroshima-u.ac.jp/

Preface

The Hiroshima Synchrotron Radiation Center was inaugurated in 1996, as part of the academic policies of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). A compact 700MeV electron-storage ring, called HiSOR (this center is often referred as HiSOR), produces synchrotron radiation in the range of ultraviolet and soft x-ray. The mission of the center is to promote advanced research in the field of condensed matter physics including interdisciplinary fields using synchrotron radiation, as well as to develop human resources making the most of the international research environment established in the national university. In FY2010, the center was authorized as a "Joint Usage / Research Center" by the MEXT for six years, and the authorization was extended until FY2021, in 2016.

In FY2018, the real number of HiSOR users amounted to 228 (Hiroshima University: 84, domestic institutes: 80, foreign institutes: 64). We have accepted 127 proposals including 36 proposals from outside Japan. Detailed scientific results are reported in this volume.

It is our great pleasure to note that Dr. Koji Miyamoto, an assistant professor of HiSOR, has received a commendation by the Minister of Education, Culture, Sport, Science and Technology for his outstanding achievements in spin-resolved photoemission studies of topological surface states. Furthermore, Dr. Shunya Matsuba, an assistant professor of HiSOR, has received a Young Scientist Award of the Physical Society of Japan for his work on the generation of vector beam with tandem helical undulators, which has been done in collaboration with the Institute of Molecular Science and Nagoya University.

From Oct. 4 to Oct. 6, 2018, we hosted the International Workshop on Trends in Advanced Spectroscopy in Materials Science (TASPEC) in the campus of Hiroshima University. The scope covered a broad range of experimental and theoretical hot topics of gas-phase molecules, liquids, solids and their surfaces/interfaces studied by various spectroscopic methods such as photoelectron spectroscopy, x-ray absorption spectroscopy, operand and/or *in situ* microscopy, and time-resolving techniques. The program consistsed of 20 invited talks, 14 contributed talks, and 45 posters. 110 participants from 11 countries attended the workshop and actively discussed the latest scientific results.

During FY2018, two distinguished visiting professors stayed at HiSOR. Prof. Junfeng He from the University of Science and Technology of China stayed one month to promote highresolution angle-resolved photoemission study of correlated materials. Prof. Nikolai Sokolov from the Ioffe Physical-Technical Institute, Russian Academy of Sciences stayed three months to develop a soft x-ray reflection spectrometer on the beamline BL-14, and to run soft x-ray MCD studies on functional thin films grown in his laboratory.

In closing, I would like to thank all the staff members for their great efforts to operate HiSOR, and to maintain and advance experimental stations. I also want to thank our students and collaborators for their excellent scientific achievements, making full use of our facilities. Finally, I deeply appreciate the continued supports by Hiroshima University and the MEXT.

July 2019

Kenya Shimada

Kenya Shimada Director of Hiroshima Synchrotron Radiation Center

Table of Contents

Preface

Current Status of HiSOR

Status of the HiSOR storage ring	1
Beamlines	4

Future Plan of HiSOR

Design study of an electron storage ring for the future plan of Hiroshima Synchrotron
Radiation Center
S. Matsuba, K. Shimada, M. Katoh, K. Kawase, K. Harada

Research Activities

-Accelerator Studies-

Vector beam generation with tandem helica	ıl ur	ndulators	in	UVSOR	•••••	•••••	9
S. Matsuba, K. Kawase, A. Miyamoto,	, S.	Sasaki,	M.	Fujimoto,	T.	Konomi,	N.
Yamamoto, M. Hosaka, M. Katoh							

-Synchrotron Radiation Experiments-

ARPES measurements on thin films of topological crystalline insulator Pb _x Sn _{1-x} Te23
Y. Tomohiro, H. Ito, T. Shimano, R. Akiyama, E. F. Schwier, A. Kimura, K. Shimada,
S. Hasegawa, S. Kuroda
ARPES study of the evolution of electronic structures of Yb-doped SmB ₆ 25
S. Xiao, Y. Feng, T. Wu, E. F. Schwier, K. Shimada, S. He
The ARPES studies on nodal-line semimetal LaSbTe
Y. Wang, W. Zhao, G. Liu, E. F. Schwier, K. Shimada, X. Zhou
Excitonic correlation effect in multi-band superconductors
T. Mizokawa, Y. Matsuzawa, T. Morita, N. L. Saini, T. Asano, T. Nakajima, R.
Higashinaka, T. D. Matsuda, Y. Aoki, E. F. Schwier, K. Shimada
The electronic structure investigation on Pd doped SrIrO ₃ thin film31
T. Komesu, P. E. Evans, A. J. Yost, E. F. Schwier, K. Shimada, L. Zhang, X. Hong,
P. A. Dowben
Current activities of research and education on BL-5 (FY2018)
T. Yokoya, T. Wakita, Y. Muraoka, K. Terashima
Development on on-site cleaning method of carbon contamination with atomic
hydrogen
M. Niibe, T. Tokushima, T. Kono, Y. Hashimoto, Y. Horikawa, H. Yoshida
Ex-situ/in-situ soft X-ray absorption investigation towards corrosion of Cu and
passivation behavior of Ti
Y. Jin, Q. Wang, F. –F. Huang, Y. –T. Cui, H. Yoshida, T. Tokushima
Photoelectron spectroscopy of YbCu _x systems
H. Yamaoka, H. Sato, N. Tsujii, K. Shimada
Observation of singly occupied molecular orbital in 2-iodo nitronyl nitroxide radical
H. Anzai, Y. Ono, R. Takakura, H. Sato, T. Matsui, S. Noguchi, Y. Hosokoshi
Photoelectron spectroscopy of Yb_4TGe_8 ($T = Cr, Mn, Fe, Ni$)
H. Yamaoka, H. Sato, M. Hikiji, S. Yamanaka, C. Michioka, N. Tsujii, K. Shimada,
K. Yoshimura
Electronic structure of Mn ₃ Sn investigated by angle-resolved photoemission
S. Wu, M. Arita, K. Sumida, K. Miyamoto, H. Sato, T. Okuda
Elucidation of the electronic band of germanene superperiodic structure
O. Kubo, S. Kinoshita, H. Sato, T. Okuda
Photoemission spectroscopy study for half-metal Heusler compounds
K. Goto, Y. Sakuraba, H. Sato, K. Hono

Photoelectron spectroscopy of thin-film beta tungsten
H. T. Lee, H. Yamaoka, A. Nagakubo, H. Sato
Angle resolved photoemission study of Sm _{1-x} Yb _x B ₆
M. Arita, H. Sato, K. Shimada, H. Namatame, M. Taniguchi, H. Tanida, Y. Osanai,
K. Hayashi, F. Iga
Linear polarization dependence of angle resolved photoemission study on SmB_6 53
M. Arita, H. Sato, K. Shimada, H. Namatame, M. Taniguchi, H. Tanida, Y. Osanai,
K. Hayashi, F. Iga
Probing bulk k_z dispersion of a correlated semimetal CeSb by low hv ARPES
K. Kuroda, S. Akebi, R. Noguchi, S. Kunisada, M. Arita, H. Kitazawa, S. Shin, H.
Suzuki, T. Kondo
Semiconductor to metal transition and spin-orbit coupling in boron doped graphene
nanoribbons
A. Grüneis, B. Senkovskiy
High-resolution ARPES study of Ca ₃ Ru ₂ O ₇
D. Ootsuki, A. Hishikawa, Y. Takasuka, D. Shibata, Y. Shinya, N. Kikugawa, M.
Arita, H. Tamatame, M. Taniguchi, T. Yoshida
ARPES study on the new candidate Weyl semimetal in XSi $(X = Co, Rh)$
C. Li, J. Huang, D. Wu, W. Wu, G. Liu, J. Luo, K. Shimada, X. Zhou
Electronic correlation effect in electron-hole systems with orbital degeneracy61
T. Mizokawa, R. Matsumoto, T. Mitsuoka, T. Shimaiwa, N. L. Saini, R. Jha, R.
Higashinaka, T. D. Matsuda, Y. Aoki, and M. Arita
Electronic structure of electron-doped $J = 1/2$ Mott insulators
Y. Hu, Z. Wei, J. He
Photoemission study of mechanical polished FeSi [111] surface65
M. Arita, K. Shimada, T. Kanomata
Electronic structure of van der Waals ferromagnet Fe ₃ GeTe ₂ 67
X. Xu, Y. J. Chen, L. X. Wang, Y. L. Chen
Multiple topological states in iron-based superconductors
P. Zhang, Y. Ishida, K. Sumida, S. Wu, K. Miyamoto, T. Okuda, S. Shin
Experimental observation of node-line-like surface states in LaBi71
B. Feng, J. Cao, M. Yang, Y. Feng, S. Wu, B. Fu, M. Arita, K. Miyamoto, S. He, K.
Shimada, Y. Shi, T. Okuda, Y. Yao
Observation of bulk and surface spin-orbital textures in nonsymmorphic NbGeSb74
I. Marković, O. Clark, S. Wu, T. Okuda, K. Murphy, J. Alaria, P. King

Spin-resolved photoemission studies on possible half-metallic $SrRu_3$ thin film75
H. Ryu, S. Das, B. Kim, C. Kim, T. Okuda
Spin resolved Dirac cone surface state in trigonal layered PtBi ₂
Y. Feng, S. Xiao, K. Shimada, S. He
Electronic and spin structure of Bi-graphene-like system
V. A. Golyashov, A. Kimura, T. Okuda, O. E. Tereshchenko
Spin polarized electronic structure of metal overlayers on magneto-electric Cr ₂ O ₃ 80
T. Komesu, M. Kakoki, T. Okuda, K. Miyamoto, P. E. Evans, P. A. Dowben
Insight into the spin-texture of Shockley and Dirac states handling by competitive spin-
orbit and exchange magnetic interactions in GdRh ₂ Si ₂ , HoRh ₂ Si ₂ , GdIr ₂ Si ₂ , and
YbIr ₂ Si ₂ materials
D. Vyalikh, D. Usachov, G. Poelhen, A. Santander-Syro, T. Imai, K. Miyamoto, T.
Okuda
Spin structure of the gapped Dirac cone of first antiferromagnetic topological insulator
MnBi ₂ Te ₄
I. I. Klimovskikh, S. Filnov, D. Estyunin, A. M. Shikin
Spin-resolved photoemission spectroscopy study for half-metal Heusler compounds
K. Goto, Y. Sakuraba, M. Kakoki, T. Kono, T. Okuda, K. Hono
Identifying sulfur species adsorbed on particulate matters in exhaust gas emitted from
a container carrier
S. Asaoka, T. Dan, S. Hayakawa
Sulfur K-edge XAFS analysis of aqueous solutions of sulfur compounds using an in-
situ liquid flow cell
D. Nishino, A. Doi, K. Komaguchi, S. Hayakawa
Polarization dependence of S K-edge XAFS spectra from polythiophene thin films91
Y. Hamashima, K. Fukuda, D. Kajiya, K. Saitow, A. Mori, K. Komaguchi, J. Ohshita,
S. Hayakawa
Identification of sulfur species in road dust collected from emerging countries in Asia
W. A. Jadoon, S. Asaoka, L. Liao, S. Hayakawa
Efficient photocatalytic activation of C-H bonds by spatially controlled chlorine and
titanium on the silicate layer
N. Tsunoji, H. Nishida, K. Komaguchi, S. Hayakawa, Y. Yagenji, M. Sadakane, T.
Sano

Conformation analysis of chitin by vacuum-ultraviolet circular dichroism spectroscopy
K. Matsuo
Structural change of DNA repair protein XRCC4 by phosphorylation at c-terminal
revealed by VUV-CD
K. Nishikubo, M. Hasegawa, Y. Izumi, K. Fujii, K. Matsuo, Y. Matsumoto, A. Yokoya
Circular dichroism analysis of optical activity emergence in amino-acid thin films
irradiated by vacuum-ultraviolet circularly-polarized light
J. Takahashi, T. Sakamoto, Y. Izumi, K. Matsuo, M. Fujimoto, M. Katoh, Y. Kebukawa, K. Kobayashi
VUVCD measurement of lysine-36 trimethylated histone H3 protein (H3K36me3)
Y. Izumi, K. Matsuo
Study on structural changes of histone core proteins in Arabidopsis after gamma
irradiation
J. –H. Kim, T. –H. Ryu, Y. Izumi
Effects of mono-saccharides on structural stability of apo-myoglobin investigated by
VUVCD spectroscopy
T. Shimizu, M. Kumashiro, Y. Izumi, K. Matsuo
Vacuum-ultraviolet circular dichroism of sucralose106
Y. Maki, K. Matsuo
Secondary-structure analysis of DNA gyrase inhibitor derived from Staphylococcus
<i>aureus</i> by vacuum-ultraviolet circular-dichroism spectroscopy
Spectrum measurement of human de novo evolved gene product NCYM using
vacuum-ultraviolet circular dichroism110 T. Matsuo, Y. Suenaga, K. Matsuo, T. Tamada
Ultrafast charge transfer dynamics on partially fluorine-substituted aromatic
monolayers analyzed by Auger electron spectroscopy
Ion desorption measurements using pulsed HV time-of-flight mass spectrometer at
HiSOR
K. Yamamoto, A. Hiraya, S. Wada

Study toward time-of-flight mass spectrometry of Ion desorption following inner-shell
excitation of molecules adsorbed on a surface115
Y. Hikosaka, H. Shimada, S. Wada
Soft X-ray spectroscopies for Br-incorporated DNA nucleotide
M. Hirato, K. Fujii, A. Yokoya, S. Wada, Y. Baba
X-ray absorption spectroscopy of YbCu _x at Cu- L_3 absorption edge
H. Yamaoka, N. Tsujii, M. Sawada, K. Shimada
Development a soft X ray reflectometer in a low vacuum environment at HiSOR-BL14
T. Mayumi, Y. Ohashi, N. Ichikawa, M. Sawada
Magnetic properties of Co ultrathin films intercalated underneath monolayer h-BN
grown on Ni(111) probed by soft-X-ray magnetic circular dichroism122
Y. Ohashi, N. Ichikawa, T. Mayumi, M. Sawada
Antiferromagnetic coupling at the interface of Co/h-BN/Ni(111) studied by soft X-ray
magnetic circular dichroism123
N. Ichikawa, Y. Ohashi, T. Mayumi, M. Sawada, A. Kimura
Cation distribution and magnetic properties of NiFe ₂ O ₄ nanofilms on MgO and SrTiO ₃
substrates: XAS and XMCD soft X-ray studies125
A. K. Kaveev, A. G. Banshchikov, N. S. Sokolov, M. Sawada
Investigation of multi-mode spin-phonon coupling and local B-site disorder in
Pr ₂ CoFeO ₆ by Raman spectroscopy and correlation with its electronic structures by
XPS and XAS studies
A. Pal, S. Ghosh, A. G. Joshi, S. Kumar, S. Patil, P. K. Gupta, P. Singh, V. K.
Gangwar, P. Prakash, R. K. Singh, E. F. Schwier, M. Sawada, K. Shimada, A. K.
Ghosh, A. Das, S. Chatterjee

-Off-line Experiments-

Study of ARPES, magnetic and magneto-transport properties of Dy-doped Bi_2Te_3
topological insulator
S. Kumar, V. K. Gangwar, Y. Zhang, P. Shahi, S. Patil, E. F. Schwier, K. Shimada, Y.
Uwatoko, S. Chatterjee
Nodal gap in electron-doped $J = 1/2$ Motto insulators
Y. Hu, Z. Wei, J. He
ARPES studies of ultrathin ferromagnetic films on topological insulators for spintronic
applications
A. K. Kaveev, O. E. Tereshchenko, V. A. Golyashov, E. F. Schwier

Appendices

Organization	135
List of publications	
List of accepted research proposals	145
Symposium	153
Plan of the building	154
Location	155

Current Status of HiSOR

Status of the HiSOR storage ring

1. Introduction

The HiSOR is a synchrotron radiation (SR) source of Hiroshima Synchrotron Radiation Center, Hiroshima University, established in 1996. It is a compact racetrack-type storage ring having 21.95 m circumference, and its natural emittance of 400π nmrad is rather large compared with those of the other medium to large storage rings. The most outstanding advantage of the facility lies in good combination with state-of-the-art beamlines (BL's) for high-resolution photoelectron spectroscopy in the photon energy ranges between VUV and soft X-ray. The principal parameters of HiSOR are shown in Table 1.

HiSOR has two 180-deg. Normal-conducting bending magnets which generate a strong magnetic field of 2.7 T. This storage ring is equipped with two insertion devices, a linear undulator and a quasi-periodic APPLE-II undulator which replaced to the previous helical undulator in summer 2012. Major parameters of these undulators are listed in Table 2. The photon energy spectra of the SR from HiSOR are shown in Figure .

6 6
21.95 m
Racetrack
0.87 m
150 MeV
700 MeV
0.6 T
2.7 T
150 MeV Racetrack Microtron
(1.72, 1.84)
191.244 MHz
14
200 kV
300 mA
400π nmrad
~10 hours@200 mA
1.42 nm
1.2×10 ¹¹ /sec/mr ² /0.1%b.w./300mA

Table 1: Main parameters of the HiSOR Storage ring.

Linear undulator (BL-1)	
Total length	2354.2 mm
Periodic length λu	57 mm
Periodic number	41
Pole gap	30-200 mm
Maximum magnetic field	0.41 T
Magnetic material	Nd-Fe-B (NEOMAX-44H)
Quasi-Periodic APPLE-II	
undulator (BL-9A,B)	
Total length	1845 mm
Periodic length λu	78 mm
Periodic number	23
Pole gap	23-200 mm
Maximum magnetic field	0.86 T (horizontal linear mode)
	0.59 T (vertical linear mode)
	0.50 T (helical mode)
Magnetic material	Nd-Fe-B (NEOMAX-46H)

Table 2: Main parameters of the undulators.

Figure 1: Photon energy spectra of the SR from HiSOR.

2. Operation status in FY 2018

The ring is operated for users from Tuesday to Friday. Figure 2 shows an example of typical users operation for one day. Beam injection for HiSOR is executed twice a day, at around 9:00 and 14:30. Machine is operated for machine conditionings and studies on Monday.

Figure 3 shows monthly operation time of HiSOR storage ring in FY 2018. HiSOR has a long term shutdown period for maintenance works in every summer. The total user time of FY2018 achieved 1580 hours.

Figure 2: Typical daily operation status.

Figure 3: Monthly operation time in FY 2018.

Beamlines

A total of 13 beamlines has been constructed so far; three normal-incidence monochromators, seven grazing-incidence monochromators, two double crystal monochromators and apparatus for white beam irradiation (Fig. 1). Table 1 lists the beamlines at present together with the main subject, energy range and monochromators.

Beamline	Source	Monochromator	Subject	Energy range (eV)	Status
BL-1	LU	GIM	Polarization dependent	22-300	In use
			high-resolution ARPES		
BL-3	BM	DCM	Surface XAFS	1800-3200	In use
BL-4	BM		White beam irradiation		Closed
BL-5	BM	GIM	ARPES and PEEM	40-220	In use
BL-6	BM	GIM	Gas-phase photochemistry	200-1200	In use
BL-7	BM	GIM	ARPES	20-380	In use
BL-8	BM		Beam diagnosis		In use
BL-9A	HU/LU	NIM		5-35	In use
BL-9B	HU/LU	GIM	High-resolution	16-300	In use
			spin-resolved ARPES		
BL-11	BM	DCM	XAFS	2000-5000	In use
BL-12	BM	NIM	VUV-CD of biomaterials	2-10	In use
BL-13	BM	GIM	Surface photochemistry	60-1200	In use
BL-14	BM	GIM	Soft-XMCD of	400-1200	In use
			nano-materials		
BL-15	BM	NIM	VUV-CD of biomaterials	4-40	Closed
BL-16	BM		Beam profile monitor		In use

Table 1: List of Beamlines

At present, nine beamlines BL1, BL3, BL6, B7, BL9A, BL9B, BL11, BL12, BL13 and BL14 are opened for users. Furthermore, three offline systems, resonant inverse photoemission spectrometer (RIPES), low-temperature scanning tunneling microscope (LT-STM) system, high-resolution angle-resolved photoemission spectrometer using ultraviolet laser (Laser ARPES) are in operation (Fig. 2).

Fig. 1: Schematic view of the experimental hall.

Fig. 2: Experimental stations on the beamline and offline: (a) BL-1, (b) BL-3, (c) BL-6, (d) BL-7, (e) BL-9A, (f) BL-9B, (g) BL-11, (h) BL-12, (i) BL-13, (j) BL-14, (k) RIPES (offline), (l) LT-STM (offline), (m) Laser ARPES (offline), (n) Laser spin-ARPES (offline).

Future Plan of HiSOR

Design Study of an Electron Storage Ring for the Future Plan of Hiroshima Synchrotron Radiation Center

S. Matsuba^a, K. Shimada^a, M. Katoh^a, K. Kawase^b and K. Harada^c

^aHiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan

^bNational Institutes for Quantum and Radiological Science and Technology, 2-4 Shirane, Shirakata, Tokaimura, Ibaraki 319-1106, Japan

^c High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan

Keywords: Storage Ring, Lattice, Undulator, Brilliance.

We have designed a magnetic lattice of a storage ring for the future plan of Hiroshima synchrotron radiation center [1]. We selected a basic cell structure similar to that of ASTRID2 [2]. Circumference of this ring is 49.5 m and natural emittance is 9.4 nm. The ring has three long and three short straight sections as shown in FIGURE 1. The 5m long straight sections are capable of installing long or tandem undulators for advanced light source technologies [3]. The 2.2 m short straight sections are for installation of injection system, RF cavity and an in-vacuum undulator. The optical functions are shown in FIGURE 2 and the main parameters of storage ring are summarized in TABLE 1.

Figure 3 shows synchrotron radiation spectra calculated using a code SPECTRA [4] for a 4 m long APPLE-II type with periodic length of 60 mm and the maximum K value of 3.4 in the horizontal polarization condition and a 2 m long in-vacuum type with periodic length of 38 mm and K-value of 2.4-0.19. The brilliance of the new ring is typically larger by 1 or 2 orders of magnitude than the present HiSOR at the beam current of 300 mA, as shown in FIGURE 3.

FIGURE 1. Schematic layout of HiSOR-II storage ring [1].

FIGURE 2: Betatron functions and dispersion function for one third of HiSOR-II storage ring [1].

FIGURE 3: Comparison of brilliance of the synchrotron radiation from HiSOR and HiSOR-II.[1]

TABLE 1 : Main Parameters.			
Beam energy	500 MeV		
Circumference	49.5 m		
Magnetic field	1.027 T		
Beam radius	1.623 m		
Natural emittance	9.4 nm		
Betatron tune	5.39, 2.09		
Momentum compaction	0.01		
RF frequency	102.96 MHz		
Harmonic number	17		
RF voltage	50 kV		
Sored current	200 mA		
Energy loss per turn	3.4 keV		
Energy spread	0.00037		
Bunch length	17.8 mm		

REFERENCES

- 1. S. Matsuba et al., J. Phys. Conf. Ser. (accepted)
- 2. Niels Hertel, Søren Pape Møller and Jørgen S. Nielsen, Preliminary Design Report for ASTRID2, August 2009
- S. Matsuba K. Kawase, A. Miyamoto, S. Sasaki, M. Fujimo-to, T. Konomi, N. Yamamoto, M. Hosaka, M. Katoh, Appl. Phys. Lett. 113, 021106 (2018).
- 4. T. Tanaka and H. Kitamura, J. Synchrotron Rad. (2001). 8, 1221-1228.

Research Activities

- Accelerator Studies -

Vector beam generation with tandem helical undulators in UVSOR

Shunya Matsuba^a ,Keigo Kawase^b , Atsushi Miyamoto^c ,Shigemi Sasakia ^d , Masaki Fujimoto^e , Taro Konomi^f , Naoto Yamamoto^f , Masahito Hosaka^g and Masahiro Katoh^{e,g}

^a Hiroshima Synchrotron Radiation Center, Hiroshima University, ^bQST, ^cToshiba, ^dAPS, ^eInstitute for Molecular Science, National Institutes of Natural Sciences/Sokendai, ^fKEK, ^gSynchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603, Japan

Vector beams is a sort of structured light which have a donuts-shaped intensity with spatially dependent polarization that direction rotates around its beam axis [1,2]. Some examples of vector beams are shown in the Figure 1. Vector beams of radial polarization, shown in the left figure of Fig.1, can be focused beyond the diffraction limit and longitudinal electric fields appear when focused. Therefore, they have been investigated for many applications including imaging and optical communication, plasmon excitation and acceleration of electrons [2]. Vector beams has long been interest in laser community. Edge radiation and transition radiation are known as radial polarized beam in accelerator light source. Therefore, we propose a scheme to generate vector beams by synchrotron radiation [3]. The scheme is akin to cross undulator which produces circularly polarized light from tandem horizontally and vertically polarized undulators [4]. We expand to the scheme into two-dimensional superposition of second harmonics from two oppositely circular polarized undulators. Second harmonics of helical undulators is known as optical vortices which have a donut-shaped intensity, uniform circular polarization state with forming spiral phase front. It is well known that vector beams can be created by superposing two optical vortex beams. The example of experimental results are shown in the right figures of Fig.1. We present principle and experimental details of this scheme in this presentation.

Fig. 1. A schematic illustration of vector beams (left and middle) and distributions of directions of polarization obtained by experiment (right). The arrows and back ground indicated polarization direction and intensity of each positions.

REFERENCES

[1] H. Rubinsztein-Dunlop, et. al., J. Opt. 19, 013001 (2017).

[2] Q. Zhan, Adv. Opt. Photonics 1, 1 (2009).

[3] S. Matsuba, et al., Appl. Phys. Lett. 113, 021106 (2018).

[4] K. J. Kim, Nucl. Instrum. Meth. Phys. Res. 219, 425 (1984).