Observation of electron structure of chiral magnet Yb(Ni_{1-x}Cu_x)₃Al₉ by ARPES

Y. Tanimoto^a, M. Sugimoto^b, R. Kamimori^a, H. Sato^c, M. Arita^c, S. Kumar^c, K. Shimada^c, S. Nakamura^d, S. Ohara^d

^aGraduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

^bFaculty of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan ^cHiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan ^dGraduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Keywords: chiral magnetic crystal, helical magnetism, angle resolved photoemission spectroscopy

Trigonal YbNi₃Al₉ has a chiral crystal structure belonging to space group of R32 (No. 155) and is of interest as the first chiral magnetic alloy discovered in 4*f* electron compounds [1]. The localized Yb 4*f* spins are magnetically ordered below T=3.4 K, ferromagnetic in the *ab*-plane, and exhibit left-handed or right-handed helical magnetism with period $q_z=0.8$ in the *c*-axis direction [2]. Substitution of Ni with Cu significantly alters the magnetic interaction and shortens the helical period to $q_z=0.4$ for Yb(Ni_{0.94}Cu_{0.06})₃Al₉. Spin-polarized conduction electrons are thought to be responsible for this phenomenon. In this study, angle-resolved photoemission spectroscopy (ARPES) was performed on YbNi₃Al₉ and Yb(Ni_{0.94}Cu_{0.06})₃Al₉ to investigate the band structure of conduction electron bands near the Fermi level (E_F). Single crystals used for the ARPES measurements were synthesized by the flux-method [3]. The experiments were performed at BL-1 and BL-9A of Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University.

Figures 1(a) and (b) show the ARPES intensity plots of YbNi₃Al₉ measured at hv=24 eV with *p*-polarized geometry along the $\overline{\Gamma}$ - \overline{M} and $\overline{\Gamma}$ - \overline{K} directions of the surface Brillouin zone, respectively. Some hole-like bands around the $\overline{\Gamma}$ point and an electron-like band around the \overline{M} point cross E_F . The bands located at around $E_B=2.0\sim3.0$ eV are due to the Ni 3*d* states. A parabolic band with a top of $E_B\sim3.0$ eV centered at the $\overline{\Gamma}$ point is also observed.

Fig. 1. ARPES intensity plots of YbNi₃Al₉ measured along (a) $\overline{\Gamma} \cdot \overline{M}$ and (b) $\overline{\Gamma} \cdot \overline{K}$ directions measured at hv=24 eV with p-polarized geometry.

Figures 2(a) and (b) represent the Fermi surfaces of YbNi₃Al₉ measured at hv=24 eV with p- and s-polarized geometries. The horizontal and vertical axes are the wavenumbers (k_x, k_y) along $\overline{\Gamma} \cdot \overline{K}$ and $\overline{\Gamma} \cdot \overline{M}$ directions, respectively. In Fig. 2(a), five hole-like Fermi surfaces, (a)~(e), were observed around the $\overline{\Gamma}$

point. The bands (b)~(e) in Fig. 2(a) correspond to the bands (b')~(e') in Fig. 2(b). The band (b) appears three-fold symmetric, reflecting the trigonal crystal structure with the three-fold symmetry. On the other hand, the (f) band at $k_x=0.6\sim0.9$ Å⁻¹ and $k_y=0.3\sim0.6$ Å⁻¹ in Fig. 2(a), which is not detected in Fig. 2(b), is an electronic-like Fermi surface. The (f) band has six-fold symmetry.

The Fermi surfaces of $Yb(Ni_{0.94}Cu_{0.06})_3Al_9$ becomes smaller in comparison with that of $YbNi_3Al_9$, although the feature is almost unchanged. This observation indicates the electron doping due to the substitution of Ni ion with Cu. The spin-resolved ARPES measurements for $YbNi_3Al_9$ are in progress.

Fig. 2. Fermi surfaces of YbNi₃Al₉ measured at hv=24 eV with (a) p- and (b) s-polarized geometries.

REFERENCES

- 1. S. Ohara, S. Fukuta, K. Ohta, H. Kono, T. Yamashita, Y. Matsumoto and J. Yamaura, JPS Conf. Proc. 3, 017016 (2014).
- T. Matsumura, Y. Kita, K. Kubo, Y. Yoshikawa, S. Michimura, T. Inami, Y. Kousaka, K. Inoue and S. Ohara, J. Phys. Soc. Jpn. 86, 124702 (2017).
- 3. T. Yamashita, R. Miyazaki, Y. Aoki and S. Ohara, J. Phys. Soc. Jpn. 81, 034705 (2012).