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Searching for new elementary excitation/quasiparticles is a key pursuit of condensed matter physics. In
the past decades, Weyl and Dirac type low-energy quasiparticles, in analog to relativistic massless Weyl
and Dirac fermions in high-energy physics, have been realized based on materials such as graphene,
topological insulator, and Weyl/Dirac semimetal. Moreover, the 230 space groups in condensed matter
physics impose fewer constraints on the allowed types of fermions. New fermionic quasiparticles beyond
high-energy physics, including threefold, sixfold, and eightfold fermions, can emerge. So far, while Weyl
(twofold), threefold, Dirac (fourfold), and sixfold quasiparticles have been observed in quantum
materials[1-12], eightfold fermions remain to be realized. Based on a nonsymmorphic crystal TaCo2Te2,
we provide a clear spectroscopic signature of eightfold degenerate fermions protected by the combination
of crystalline and time-reversal symmetry.

We establish TaCo2Te2 as a conjoint topological and quantum critical platform with handful stimuli
available to tune its physical properties. Chemical substitution or applying strain may introduce long range
magnetic order and magnetic quantum critical point is expected. The negligible SOC leads to the practical
realization of eightfold fermions, which, according to theoretical analysis, serves as a topological quantum
critical point. Symmetry breaking via magnetic field or uniaxial strain may lead to various topologically
trivial or nontrivial phases such as Dirac point, Weyl point or nodal lines. Consequently, our findings will
stimulate broad research interest from subfields of condensed matter physics such as quantum transport,
strong correlation, material synthesis and topological states of matter.
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FIGURE 1. Crystal structure, eightfold fermion, fourfold van Hove singularity and hourglass in TaCo2Te2. (a) Crystal
structure. (b) 3D bulk BZ. (c) DFT calculated dispersions along the high-symmetry path with considering SOC. (d, e) DFT
calculated dispersions and ARPES dispersion around eightfold fermion. (f-h) DFT calculated dispersions and ARPES
dispersion around van Hove singularity. (i-k) DFT predicted hourglass fermions in TaT2Te2 (T= Co, Rh and Ir).
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