Direct observation of Dirac nodal-line fermions in P-square net superconductor, ZrP_{1.24}Se_{0.57}

S. Ishizaka^a, A. Ino^{b,c}, T. Kono^a, Y. Miyai^d, S. Kumar^c, K. Shimada^c, H. Kito^e,
I. Hase^e, S. Ishida^e, K. Oka^e, H. Fujihisa^e, Y. Gotoh^e, Y. Yoshida^e, A. Iyo^e,
H. Ogino^e, H. Eisaki^e, K. Kawashima^{f,e}, Y. Yanagi^{f,e}, A. Kimura^{a,d}

^aGraduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 ^bKurume Institute of Technology, 2228-66 Kamitsu, Kurume, Fukuoka 830-0052 ^cHiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan ^dGraduate School of Advanced Sciences and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan ^eNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan ^fIMRA JAPAN Co., Ltd., Kariya, Aichi 448-8650, Japan

Keywords: Dirac nodal-line fermion, nonsymmorphic space group, superconductor, ARPES, Dirac velocity, nodal loop

In recent years, Dirac nodal-line fermions in superconducting materials have attracted much attention due to expectation for novel transport properties [1]. For instance, a Dirac nodal-line semimetal (DNLS), PbTaSe₂, exhibits Dirac velocity of 4.0×10^5 m/s and superconductivity with critical temperature (T_c) of 3.8 K [2]. However, in order to realize low-loss and fast electronics, the nodal-line superconductors which exhibit higher Dirac velocity and higher T_c are desired. Here, we focus on a recently-discovered layered-phosphide-chalcogenide superconductor, $ZrP_{2-x}Se_x$ ($T_c = 6.2$ K) [3]. This material is isostructural with ZrSiS, which is known as a typical DNLS. While the first-principles calculation has predicted that a nodal line is present in the band structure of $ZrP_{2-x}Se_x$ [4], no experimental evidence has been reported so far. In this study, we performed an angle-resolved photoemission spectroscopy (ARPES) study of high-quality single crystals of ZrP_{1.24}Se_{0.57}, using soft X-ray (SX) and vacuum ultraviolet (VUV) synchrotron radiations at BL25SU of SPring-8 and BL-10f HiSOR, respectively.

The band dispersions of ZrP_{1.24}Se_{0.57} observed by VUV-ARPES along the X- Γ -X and M- Γ -M lines are shown in Figs. 1(a) and (b), respectively. Two electron pockets, γ and δ , centered at the Γ point, and an electron pocket, ε , centered at the X point are observed, as shown in Fig. 1(a). We observed that two steep and straight dispersions cross with each other at -1.3 eV with Dirac velocity of 1.2×10^6 m/s, and that the crossing point forms a closed nodal-loop in the k_x - k_y plane. The experimental band structures is well reproduced by tight-binding calculation of a free-standing P square net.

FIGURE 1. Experimental *E-k* plots along the (a) X- Γ -X and (b) M- Γ -M, respectively, with hv = 50 eV for ZrP_{1.24}Se_{0.57}.

In summary, we have demonstrated that $ZrP_{1.24}Se_{0.57}$ is a nodal-line superconductor. The fast Dirac fermions of 1.2×10^6 m/s in $ZrP_{1.24}Se_{0.57}$ arises from the nonsymmorphic P square net, and surpass the velocity record held by the point-node Dirac fermions in graphene. Our finding provides a new playground for emergent exotic phenomena, and will lead to a discovery of elusive Majorana fermions.

REFERENCES

- 1. C. Chen et al., Phy. Rev. B 90, 205136 (2014).
- 2. G. Bian et al., Nat. Commun. 7, 10556 (2016).
- 3. H. Kito et al., J. Phys. Soc. Jpn. 83, 074713 (2014).
- 4. I. Hase et al., J. Phys. Conf. Ser. 1590, 012008 (2020).