Splitting of Dirac band on $\mathrm{Cr}_{2} \mathrm{O}_{3} /$ Graphene/ $\mathrm{Ni}(111)$

Xueyao Hou ${ }^{1}$, Masahiro Sawada ${ }^{2}$, Shiv Kumar ${ }^{2}$, Kenya Shimada ${ }^{2}$
1. Graduate School of Science, Hiroshima University
2. Hiroshima Synchrotron Radiation Center, Hiroshima University

Graphene is one of the most promising Dirac electronic systems. By functionalizing graphene, a sizable local magnetic moments and spin-orbit coupling can be induced in graphene. The main known mechanism responsible for the π band modifications including: the spin-dependent hybridization with the d states of the transition metal (proximity exchange), spin splitting due to inversion symmetry breaking (Bychkov-Rashba splitting) and the sublattice-symmetry breaking (pseudospin splitting). Recently, it has been predicted that a nontrivial band gap opening in the graphene Dirac bands asymmetric between K and K valleys at antiferromagnets $\mathrm{Cr}_{2} \mathrm{O}_{3} /$ graphene 2 interface, which is mediated by symmetry protected boundary magnetization of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ and proximity effect induced SOC. The fabrication of this structure has been realized by Picone's group successfully on $\mathrm{Ni}(111)$ substrate. Moreover, a narrowed band gap of ultrathin $\alpha-\mathrm{Cr}_{2} \mathrm{O}_{3}$ than that of crystal was observed by STS. While this progress is impressive, it is recognized that the size of bulk material often largely exceeds the characteristic for inducing a large proximity spin-orbit coupling in graphene. Directly experimental evidence of a Dirac band gap opening induced by $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is still lack. From this perspective, it is beneficial to direct describe band structure of ultrathin $\mathrm{Cr}_{2} \mathrm{O}_{3} /$ graphene. Here, we report a observable giant π band splitting in ARPES experiment induced by depositing ultrathin $\mathrm{Cr}_{2} \mathrm{O}_{3}$ film on graphene $(\mathrm{Gr}) / \mathrm{Ni}(111)$. We speculate the evolution of graphene π band from n-doping-type to splitting-type comes from a nontrivial sublattice-symmetry breaking.

[1]. A. Lodesani, A. Picone, et al, ACS Nano, 2019, 13, 4361.
[2]. H. Takenaka, S. Sandhoefner, et al, Phys. Rev. B, 2019, 100, 125156.

