20AG055

Comparison of soft X-ray absorption spectra of transition metal sulfates

Kiminori Baba^a and Hiroaki Yoshida^{a,b}

 ^a Physics program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan.
^b Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, 739-0046 Japan.

Keywords: Soft X-ray absorption spectrum, 3d transition metal sulfate, H2O, SO42-, bond length

The 3*d* transition metal (Fe, Co, Ni, Cu, and Zn) sulfates make an octahedral structure with 6 coordination containing some water molecules. Those complexes have various numbers of the coordinated water such as FeSO₄_7H₂O, NiSO₄_6H₂O, and CuSO₄_5H₂O. Only copper combines directly with SO₄²⁻ in five elements. Four H₂O are coordinated in the same plane and two SO₄²⁻ are coordinated out of plane (Figure 1). To investigate how the electronic states of coordinated water molecules are affected by the central metal atoms, soft X-ray absorption spectra have been measured in the energy range of 530~545 eV (O1s) and 690~1050 eV (metal 2*p*) of the 3*d* transition metals at BL-6 [1] of the HiSOR.

Figure 2 shows the total electron yield (TEY) spectra of the 3d transition metal sulfates in the O1s edge. The lowest peaks are observed around 532.8 eV and their energies depend on the 3d transition metals. There are two kinds of oxygen atoms (H₂O and SO₄²⁻) in the present complexes. To distinguish them, the TEY spectrum of anhydrous copper sulfate (CuSO₄) is also measured and compared with CuSO₄_5H₂O (Figure 3, top panel). The lowest peak observed only in CuSO₄_5H₂O is thus ascribed to contribution of the coordinated water molecules. The difference spectrum is calculated by normalizing the two spectra with the number of oxygen atoms (Figure 3, middle panel) and compared with the spectrum of a gaseous water molecule [2] (Figure 3, bottom panel). Comparing to the 4a₁ peak of gaseous water molecule, the lowest peak of the coordinated water is shifted to lower energy side by about 1 eV and broadened. The lowest peak energies of the 3d transition metals are summarized in Table 1 with the average bond length of X-OH₂ (X= Fe, Co, Ni, Cu, and Zn). The shorter the average bond length of X-OH₂, the higher the lowest peak energy except Ni.

TEY spectra are also measured at metal 2p edge. There observed spin-orbit separation peaks of $2p_{3/2}$ and $2p_{1/2}$ to 3d transitions with the energy separation of $13\sim21$ eV except Zn, which has no hole in the 3d orbit. Comparing the experimental transition energies of $2p_{3/2}$ to 3d with the calculated differences of binding energies between 2p and 3d electrons, the largest discrepancy for Cu is considered to be ascribed to direct coordination of SO_4^{2-} to the central metal.

REFERENCES

- 1. H. Yoshida et al., J. Electron Spectrosc. Relat. Phenom., 144-147(2005) 1105-1108.
- 2. S. Myneni et al., J. Phys. Condens. Matter 14 (2002) L213-L219.

FIGURE 1. Schematic diagram of CuSO₄_5H₂O.

FIGURE 3. TEY spectra of (top) CuSO4_5H2O and CuSO4, (middle) calculated ligand (H2O) component, and (bottom) H2O (gas).

FIGURE 2. TEY spectra of *3d* transition metal (Fe,Co,Ni,Cu, and Zn) sulfates at the O*1s* edge.

TABLE 2 The lowest peak energies of the 3d transition metal sulfates and the average bond length of X-OH₂ (X= Fe,Co,Ni,Cu, and Zn).

	Peak energy (eV)	Average bond length (Å)
FeS0₄_7H₂0	532. 0	2. 123
CoSO₄_7H₂0	532. 4	2. 092
NiSO₄_6H₂O	532. 0	2. 051
CuSO₄_5H₂0	532. 8	1.956
ZnS0₄_7H₂0	532. 0	