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Preface 

 

The Hiroshima Synchrotron Radiation Center was inaugurated in 1996, as part of the 

academic policies of the Ministry of Education, Culture, Sports, Science and Technology 

(MEXT), Japan. A compact 700MeV electron-storage ring, called HiSOR (this center is often 

referred as HiSOR), produces synchrotron radiation in the range of ultraviolet and soft x-ray 

range. The mission of HiSOR is to promote advanced research in the field of condensed matter 

physics including interdisciplinary fields using synchrotron radiation, as well as to develop 

human resources making the most of the international research environment established inside 

the national university. HiSOR has been authorized as a “Joint Usage / Research Center” by 

the MEXT since FY2010. 

In FY2019, Dr. Shunya Matsuba has moved to JASRI/SPring-8, and Dr. Koji Miyamoto 

has been promoted to Associate Professor of HiSOR. Prof. Masahiro Katoh has arrived at 

HiSOR from UVSOR, and Dr. Miho Shimada has arrived from KEK on cross appointment, 

which further strengthen collaborations among HiSOR, UVSOR, and KEK, including the 

development of a compact storage ring suitable for HiSOR II.  

As concerns the joint usage/research activities of FY2019, we have accepted 238 users 

(real number) in total; 79 users from Hiroshima University, 95 users from domestic institutes, 

64 users from foreign institutes. We have accepted 130 proposals; 44 proposals from Hiroshima 

University, 43 proposals from inside Japan, and 43 proposals from outside Japan. Detailed 

scientific results are reported in this volume. We have published 42 papers in 2019, and 24 

papers (57% of total number) have been written through international collaborations. The 

number of top 10% paper is 6 which is 14% of total number, indicating quality of the research. 

From Oct. 20 to Nov. 2, 2019, Dr. Eike F. Schwier from HiSOR and Dr. Yasmine Sassa 

from Chalmers University of Technology organized MIRAI PhD School 2019, “Electronic and 

Magnetic Properties of Materials Using Large Scale Facilities”, in collaboration with J-Parc. 

The program consists of lectures, group work sessions, poster presentations and hands-on 

experiments at HiSOR and J-Parc. Students and postdoctoral fellows (7 from Japanese and 12 

from Swedish universities) from various fields participated this program. 

Due to the pandemic of new corona virus it was unfortunate that our international users 

could not come since early 2020, and we should cancel the 24th Hiroshima International 

Symposium on Synchrotron Radiation. We really hope the situation will be better in the near 

future and restart collaborative projects with outside researchers as before. 

– ⅰ – 



 

In closing, I would like to thank all the staff members for their great efforts to operate 

HiSOR, and to maintain and advance experimental stations. I also want to thank our 

students and collaborators for their excellent scientific achievements, making full use of 

our facilities. Finally, I deeply appreciate the continued supports by Hiroshima University 

and the MEXT. 

 

 

July 2020 

 

Kenya Shimada 

Director of Hiroshima Synchrotron Radiation Center 
 

– ⅱ – 
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Current Status of HiSOR 



 

 



 

Status of the HiSOR storage ring 

 

1. Introduction 

The HiSOR is a synchrotron radiation (SR) source of Hiroshima Synchrotron Radiation 

Center, Hiroshima University, established in 1996. It is a compact racetrack-type storage ring 

having 21.95 m circumference, and its natural emittance of 400 nmrad is rather large 

compared with those of the other medium to large storage rings. The most outstanding 

advantage of the facility lies in good combination with state-of-the-art beamlines (BL’s) for 

high-resolution photoelectron spectroscopy in the photon energy ranges between VUV and 

soft X-ray. The principal parameters of HiSOR are shown in Table 1.  

HiSOR has two 180-deg. Normal-conducting bending magnets which generate a strong 

magnetic field of 2.7 T. This storage ring is equipped with two insertion devices, a linear 

undulator and a quasi-periodic APPLE-II undulator which replaced to the previous helical 

undulator in summer 2012. Major parameters of these undulators are listed in Table 2. The 

photon energy spectra of the SR from HiSOR are shown in Figure 1. 

 

 

Table 1: Main parameters of the HiSOR Storage ring. 

Circumference 21.95 m 

Type Racetrack 

Bending radius 0.87 m 

Beam energy at Injection 150 MeV 

at Storage 700 MeV 

Magnetic field at Injection 0.6 T 

at Storage 2.7 T 

Injector 150 MeV Racetrack Microtron 

Betatron tune (x, y) (1.72, 1.84) 

RF frequency 191.244 MHz 

Harmonic number 14 

RF voltage 200 kV 

Stored current (nominal) 300 mA 

Natural emittance 400 nmrad 

Beam life time ~10 hours@200 mA 

Critical wavelength 1.42 nm 

Photon intensity (5 keV) 1.2×1011 /sec/mr2/0.1%b.w./300mA 
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Table 2: Main parameters of the undulators. 

Linear undulator (BL-1)  

Total length 2354.2 mm 

Periodic length u 57 mm 

Periodic number 41 

Pole gap 30-200 mm 

Maximum magnetic field 0.41 T 

Magnetic material Nd-Fe-B (NEOMAX-44H) 

Quasi-Periodic APPLE-II 

undulator (BL-9A,B) 

 

Total length 1845 mm 

Periodic length u 78 mm 

Periodic number 23 

Pole gap 23-200 mm 

Maximum magnetic field 0.86 T (horizontal linear mode) 

 0.59 T (vertical linear mode) 

 0.50 T (helical mode) 

Magnetic material Nd-Fe-B (NEOMAX-46H) 
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Figure 1: Photon energy spectra of the SR from HiSOR. 
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2. Operation status in FY 2019 

The ring is operated for users from Tuesday to Friday. Figure 2 shows an example of 

typical users operation for one day. Beam injection for HiSOR is executed twice a day, at 

around 9:00 and 14:30. Machine is operated for machine conditionings and studies on 

Monday. 

Figure 3 shows monthly operation time of HiSOR storage ring in FY 2019. HiSOR has a 

long term shutdown period for maintenance works in every summer. The total user time of 

FY2019 achieved 1660 hours. After the vacuum troubles at the storage ring in 2014 and 2015, 

the operation time has been recovered and is slightly increasing. 

 

400

300

200

100

0

R
in

g
 c

u
rr

en
t 

[m
A

]

09:00 12:00 15:00 18:00

Time

600

500

400

300

200

100

0

B
eam

 life tim
e [m

in
]

 

Figure 2: Typical daily operation status. 
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Figure 3: Monthly operation time in FY 2019. 
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Beamlines 

 

A total of 13 beamlines has been constructed so far; three normal-incidence 

monochromators, seven grazing-incidence monochromators, two double crystal 

monochromators and apparatus for white beam irradiation (Fig. 1). Table 1 lists the beamlines 

at present together with the main subject, energy range and monochromators. 

 

Table 1: List of Beamlines 

 

Beamline Source Monochromator Subject 
Energy range 

(eV) 
Status 

BL-1 LU GIM 
Polarization dependent 

high-resolution ARPES 
22-300 In use 

BL-3 BM DCM Surface XAFS 1800-3200 In use 

BL-4 BM  White beam irradiation  Closed 

BL-5 BM GIM ARPES and PEEM 40-220 In use 

BL-6 BM GIM Gas-phase photochemistry 200-1200 In use 

BL-7 BM GIM ARPES 20-380 In use 

BL-8 BM  Beam diagnosis  In use 

BL-9A HU/LU NIM  5-35 In use 

BL-9B HU/LU GIM 
High-resolution 

spin-resolved ARPES 
16-300 In use 

BL-11 BM DCM XAFS 2000-5000 In use 

BL-12 BM NIM VUV-CD of biomaterials 2-10 In use 

BL-13 BM GIM Surface photochemistry 60-1200 In use 

BL-14 BM GIM 
Soft-XMCD of 

nano-materials 
400-1200 In use 

BL-15 BM NIM VUV-CD of biomaterials 4-40 Closed 

BL-16 BM  Beam profile monitor  In use 

 

 

 At present, nine beamlines BL1, BL3, BL6, B7, BL9A, BL9B, BL11, BL12, BL13 and 

BL14 are opened for users. Furthermore, three offline systems, resonant inverse 

photoemission spectrometer (RIPES), low-temperature scanning tunneling microscope 

(LT-STM) system, high-resolution angle-resolved photoemission spectrometer using 

ultraviolet laser (Laser ARPES) are in operation (Fig. 2). 
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Fig. 1: Schematic view of the experimental hall. 
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Fig. 2： Experimental stations on the beamline and offline: (a) BL-1, (b) BL-3, (c) BL-6, (d) 

BL-7, (e) BL-9A, (f) BL-9B, (g) BL-11, (h) BL-12, (i) BL-13, (j) BL-14, (k) RIPES (offline), 

(l) LT-STM (offline), (m) Laser ARPES (offline), (n) Laser spin-ARPES (offline). 
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Temporal structure of synchrotron radiation may be separated into two categories. The first one is the that 

of a photon wave packet emitted from a single electron. In case of the bending radiation, the wave packet 

forms a half cycle wave whose length is related to the critical photon energy. In case of undulator radiation, 

it forms a several-cycle wave whose cycle number is exactly same as that of the undulator magnetic period. 

Another temporal structure is the width of the light pulse emitted from a bunch of electrons, which comprises 

of many wave packets randomly distributing over the length of the electron bunch.  

Usually the pulse length of synchrotron radiation, which is typically 10 to 100 psec, is measured with a 

streak camera. However, there is no report on the direct measurement of the wave packet length. In the laser 

field, it was demonstrated to measure both the light pulse width and the wave packet length (coherence 

length) by using an interferometer based on the photon correlation [1]. By using same method, it was 

demonstrated to measure the pulse width of the bending radiation [2]. 

In this study, we challenged to measure both the pulse width and the coherent length of the undulator 

radiation using an interferometer. A set of photomultiplier tubes were used for the photon detection. We 

constructed a high voltage power supply for them. They are tested at HiSOR-BL8. The result is shown in 

FIG. 1. The bunch filling of HiSOR was clearly measured and the result was consistent with the measurement 

by using a pickup electrode on the storage ring. It should be noted that the time resolution of the 

photomultiplier tubes is a few nsec and they are not capable of directly measuring the pulse width of the 

synchrotron radiation which is about 100 psec, however, in the photon correlation method, the temporal 

resolution is not limited by the detector resolution [2].  

We constructed an interferometer as shown in FIG. 2, which is a modification of Michelson-type 

interferometer. The incoming synchrotron radiation is separated into two beams by a beam splitter and they 

go into corner-cube-mirrors and are reflected. Then, they go into another beam splitter and are merged. 

Finally, they go into two detectors. In this sense, the interferometer may be similar to Mach-Zehnder type in 

its function. One of the two corner-cube-mirrors is on a movable stage. We can change the path length of 

one of the separated beams. 

Two experiments can be conducted on this interferometer. The first one is two-photon correlation and 

another is autocorrelation. In the former, the synchrotron radiation is reduced in its intensity by using 

pinholes and ND filters so that only a few photons are contained in a pulse. If two photons are incoming into 

the second splitter simultaneously, as can be shown based on the quantum mechanics, both of them should 

be detected by one of two detectors. Therefore, by moving one corner-cube-mirror, the coincidence rate of 

two photomultipliers is reduced when the two light pulses are temporally overlapped. From such observation, 

one can get information on the pulse length [1]. In the latter, each wave packet interferes with itself when 

the path lengths of the separated beams are exactly same. In this condition, one can observe a clear 
interference pattern by using a CCD camera. One can get information on the coherence length of the wave 

packets from the range of the path difference where the interference pattern appears. 
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We conducted a series of experiments by using an undulator beamline BL1U at UVSOR, IMS. We 

extracted the undulator radiation at a wavelength of 355 nm and introduced it to the interferometer. The 

details of the results will be presented in a future paper. Here, we only give a short summary. Concerning 

two-photon correlation, so far we could not get a significant result, which gives the information on the pulse 

length. On the other hand, in the autocorrelation experiment, we can get a clear result on the coherence length. 

Also, we note that the mechanical vibration produces a significant effect on the results. We will improve the 

mechanical stability of the interferometer and try the next experiment in the nearest future. 

 

 
FIGURE 1. Time structure of the bending radiation measured by a photomultiplier at HiSOR-BL8. 

 

 
FIGURE 2. Interferometer installed at UVSOR-BL1U. 
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Laser Compton scattering is a method to generate high energy photons from electron accelerators. A laser 

beam is injected onto an electron beam in the accelerators and is scattered via inverse Compton scattering. 

When the laser photons of around 1eV are scattered by high energy electrons around 1 GeV, gamma-ray 

photons of MeV energy range are produced. In this parameter range, the scattering in the electron rest frame 

is well approximated as Thomson scattering. Therefore, in this paper, we call the process laser Thomson 

scattering (LTS).  

The energy of gamma-ray photons can be changed by changing the laser wavelength, the electron energy 

or the collision angle. The gamma-ray photons are scattered into a narrow cone along the direction of the 

electron motion. By limiting the scattering angle by using a collimator, one can get quasi-monochromatic 

gamma-ray beam. Since the polarization of the gamma-rays reflects that of the laser photons, one can control 

the polarization of the gamma-rays by controlling the laser polarization. LTS gamma-rays possess such 

remarkable properties which the radioactive isotopes gamma-rays do not.  

There are a few operational LTS gamma-ray sources based on electron synchrotrons in the world [1, 2]. 

In these sources, the laser beam and the electron beam collide each other in a head-on configuration. On the 

other hand, at UVSOR-BL1U, there is a port to inject the laser beam onto the electron beam with nearly 90-

degree collision angle. By utilizing this special experimental condition, the energy tunability by changing 

the collision angle and ultrashort gamma-ray pulses are successfully demonstrated. Another interesting 

application of this setup is a micro-focus gamma-ray source, in which the laser beam is focused to a micron 

size at the colliding point. This is practically possible in the 90-dgree configuration but not in the head-on 

configuration, because we have to place the final focus mirror as close as possible to the colliding point in 

such a strong focusing. The micro-focus gamma-ray source may be benefitable to improve the resolution of 

the expanding transmission imaging. Moreover, the high photon density at the colliding point may be useful 

for investigating non-linear process [3]. 

In this study, we are developing a laser focusing system for the 90-degree configuration. Considering the 

possibility of using short pulse laser, we adopt a reflecting optics to avoid the chromatic aberration. For the 

final focusing mirror, we adopt a parabolic mirror. Before the final focusing, the laser beam should be 

expanded to realize the micro-focusing. We adopt a beam expander formed with two spherical mirrors. As 

the first step of the study, we have designed a focus optics assuming to use some commercial optical 

components. We developed a ray tracing program and simulated the focusing performance. Also, we 

constructed the optics in the laboratory and observe its performance. 

The results are summarized in FIG. 1 and 2. The simulation results indicate that about a half of the photons 

are focused in an area of the scale of 100 micron, although strong astigmatism is observed, which presumably 

arises from the off-axis configuration of the spherical mirrors in the expander. The calculation and the 

measurement are qualitatively consistent with each other. In a previous work, there was proposed a technique 

to reduce the astigmatism in such an expander configuration by slightly tilting the spherical mirrors [4]. 

Following this work, we ran a preliminary simulation to see this effect and confirmed it. Based on these 

results, we are going to design and construct the focus optics for the real experiment. 
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FIGURE 1. Ray tracing of the focusing optics. 

 

 
FIGURE 2. Spot diagram and measured laser profiles around the focusing point. 
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Beam injection into a storage ring without perturbing the stored beam is a key technology for the top-up 

operation. In the traditional injection scheme, to reduce the initial amplitude of the betatron oscillation of the 

injected beam, the orbit of the stored beam is shifted closer to the injected beam at the injection point. This 

causes movements of the source points of synchrotron radiation, which may be harmful to many applications. 

In the large facilities, only a small section of the orbit is perturbed and its effect can be minimized for many 

of the users. In small facilities, however, the perturbation extends over a significant fraction of the ring and, 

in some cases, it extends over the entire ring. To avoid this, a novel injection scheme was proposed in which 

the injected beam is deflected by a multipole magnet but the stored beam is not because it is passing through 

the center of the magnet where the magnetic field is ideally zero [1]. This scheme was tested in a few facilities 

[2, 3]. Although the injection itself was successful in these previous works, it was recognized that the 

perturbation to the stored beam is not so small as expected. When a quadrupole magnet was used, the shape 

of the stored beam was perturbed [2]. When a sextupole magnet was used, the stored beam was kicked by 

the residual magnetic field at the center which is caused by Eddy current in the magnet itself and in the beam 

pipe [3]. Considering the results from the previous works, we examine a pulsed octupole magnet, which has 

more flat field distribution around the center and, in addition, from the symmetry of the configuration, it is 

expected that the effect of Eddy current is also symmetric around the center and consequently the field is 

zero at the center. 

We have developed a particle tracking simulation code based on the linear equation of motion. The 

electron trajectory can be calculated using the transfer matrix formalism. The nonlinear effect of the pulse 

octupole magnet is taken into the calculation under a thin lens approximation. We ran simulations for a model 

synchrotron whose design is based on a compact synchrotron called NIJI-IV, which has a circumference of 

about 30 m [4]. 

The results are shown in FIG. 1 and 2. The former is the electron trajectory for about 10 turns after the 

injection without a pulsed octupole and the latter with it. The pulse width of the octupole is 1 microsecond 

and the beam is injected when the field reaches the maximum. The beam circulates in the ring for 5 times 

before the octupole field comes to be zero. As can be seen in FIG.1, without the octupole, the injected beam 

oscillates around the reference orbit with a large amplitude and after a few turns, it comes back to the original 

position, hit the beam pipe and get lost. On the other hand, with the octupole magnet, the amplitude is 

significantly reduced after a few turns and the injected beam can continue circulating. 

In summary, we have shown that there is a possibility to inject the beam into a small synchrotron by using 

a pulsed octupole magnet. Next step is to carry out more precise calculation as taking into the account the 

emittance and the energy spread of the injected beam. Also we have to take into the simulation the effect of 

sextupole magnets which are installed to compensate the chromatic effects. Also, we should design the 

pulsed octupole magnet. 
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FIGURE 1. Electron trajectory for first 16 turns after the injection without pulse octupole. The dashed lines are the 

maximum betatron amplitude. 

 
FIGURE 2. Electron trajectory for first 16 turns after the injection with pulse octupole. The position of the octupole is 

indicated by a red square. The field strength of the octupole is optimized to minimize the betatron amplitude. The trajectory 

of the first turn is indicated in the figure. 
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