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Higgs amplitude mode and charge density fluctuations 

in the nonlinear optical response of superconductors

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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Collective modes in superconductors

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
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The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the
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details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz
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method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
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FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
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sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the
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the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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• Higgs mode = collective amplitude oscillation of the superfluid density.

• One of the lowest energy excitation modes.

• Universal phenomenon in spontaneous symmetry broken phases
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Raman Scattering by Superconducting-Gap Excitations and Their Coupling
to Charge-Density %Vaves
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2H-Nbse~ undergoes a charge-density —wave (CDW) distortion at 33 K which induces
A and E Raman-active phonon modes. These are joined in the superconducting state at
2 K by new A and E Raman modes close in energy to the BCS gap 24. Magnetic fields
suppress the intensity of the new modes and enhance that of the CDW-induced modes, thus
providing evidence of coupling between the superconducting-gap excitations and the CD%.

PACS numbers: 78.30.Er, 74.30.6n, 74.70.Lp
Structural phase transitions involving charge-

density waves (CDW) in layered transition-metal
dichalcogenides have been studied extensively in
the last several years. ' Neutron diffraction stud-
ies' on 2tI-NbSe, show a transition from a nor-
mal lattice to one with a three-wave-vector in-
commensurate CDW at the onset temperature T„
of 33 K. The CDW is only a few percent out of
commensurability and the neutron data show that
it remains incommensurate down to 5 K. From
the modulus measurements of Barmatz, Testardi,
and DiSalvo' it is concluded that incommensura-
bility persists at least to 1.3 K. 2H-NbSe, is a
highly anisotropic type-II superconductor below
7.2 K.' The upper critical fields at 2 K may be
estimated from published data' and are found to
be 1Q5 and 42 ko for fields parallel and perpen-
dicular to the layers, respectively. Magnetore-
sistance studies on 2H-NbSe, have been carried
out by Morris, Coleman, and Bhandari. '
Figure 1 shows four pairs of Raman spectra

[(a)-(d)J from two different samples of 2H-NbSe„
M and B, at two different temperatures, 9 K (low-
er curves in each pair) and 2 K (upper curves)
for A and E Raman symmetries. The character-
istic CDW-induced amplitude modes (C) are near
40 cm-'. ' On cooling below 33 K, they first ap-
pear, then harden, and get stronger. ' The main
purpose of this paper is to report that when the
sample is immersed in superfluid helium at 2 K
two new Raman-active modes are seen at 18 cm '
(A) and at 15 cm ' (E), close in energy to the
BCS gap at 24. These are labeled G in Fig. 1. It
is also noted from this figure that the position of
these new peaks (G) is sample independent while
the position and strength of the CDW modes (C)
are sample dependent. This may be explained by
the work of Huntley' and Long, Bowen, and Lew-
is,' where it was shown that crystal growth tech-
niques have a small effect on superconductivity
whereas Hall-coefficient studies" indicate that

defects and impurities inhibit the formation of
CDW's.
From Figs. 1(c) and 1(d), where all curves

have the proper relative intensities, we find that
the CDW modes lose intensity when the new "gap"
modes appear. This direct coupling bebveen
modes C and 6 is shown more dramatically in
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FIG. l. Raman spectrum of samples M and B. The
lower curve of each pair [{a)-{d)] is at 9 K and the
upper at 2 K. Raman symmetries I,polarizations] are
E l{xy)l and A t(xx) —{&y)]. C labels CDW modes;
G, gap excitations; and I, the interlayer mode char-
acteristic of the 2H polytype. Incident laser beam at
5145 A and 30 mW power was spread into a line 40-50
p, m wide. Light was incident at the pseudo Brewster
angle; the scattered light collected along the c axis.
Resolution was 3 cm '. Curves (a) and (b) were drawn
by hand while (c) and {d) represent a five-point smoothed
plot through original data points. The upper curves in
the E spectra have been moved up by 20 counts/sec
while the 4 curves in (b) and (c) by 40 counts/sec The.
9- and 2-K data for sample M in (a) and (b) are each
from the same run. The same is true for sample B,
with the addition that (c) and (d) have been normalized
with respect to the intensity of the A «phonon at about
230 cm ' (Ref. 7).
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.

DOI: 10.1103/PhysRevLett.111.057002 PACS numbers: 74.40.Gh, 74.25.Gz, 78.47.J!

With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was
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Observation of Higgs mode

is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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Light-Higgs coupling

• Amplitude oscillation

mass of EM field
(Meissner effect)

Coupling between Higgs and EM fields

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.

PRL 111, 057002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

2 AUGUST 2013

057002-2

• Ginzburg-Landau theory

NAOTO TSUJI AND HIDEO AOKI PHYSICAL REVIEW B 92, 064508 (2015)

where a,b,c, and d are coefficients, φ and A are the scalar
and vector potentials, and e∗ and m∗ are the effective
electric charge and effective mass, respectively. The La-
grangian density (1) is invariant under the gauge transforma-
tion "(r,t) → eie∗χ (r,t)"(r,t), φ(r,t) → φ(r,t) − ∂tχ (r,t),
A(r,t) → A(r,t) + ∇χ (r,t). At temperatures T < Tc, a =
a0(T − Tc) becomes negative, and the global U (1) symmetry
["(r,t) → eie∗χ"(r,t) with a constant χ ] is spontaneously
broken. The other coefficients are taken to be positive. To
describe the dynamics of the order parameter, we have included
the kinetic terms, one with a coefficient c that represents the
kinetic term of Klein-Gordon-type equations, and another with
d that represents the kinetic term of Gross-Pitaevskii-type
equations.

Now, we expand L (1) around the ground state "0 =√
−a/b (the phase is chosen as such without loss of gen-

erality). There are two kinds of elementary excitations from
the ground state: the variation along the radial direction and
another along the circumferential direction on the complex
plane of the order parameter. We write them as "(r,t) =
["0 + H (r,t)]eiθ(r,t), where H and θ denote the Higgs and
Nambu-Goldstone (NG) fields, respectively. The expansion
gives us

L = c(∂tH )2 + ce∗2
(

φ + 1
e∗ ∂tθ

)2

("0 + H )2

− de∗
(

φ + 1
e∗ ∂tθ

)
("0 + H )2 + 2aH 2 − 1

2m∗ (∇H )2

− e∗2

2m∗

(
A − 1

e∗ ∇θ

)2

("0 + H )2 + · · · , (2)

in which we have dropped total-derivative terms as well as
higher-order interactions.

The terms proportional to φ∂tθ and A · ∇θ in Eq. (2)
indicate that the NG phase mode turns into a longitudinal
component of the gauge field. As a result of the Anderson-
Higgs mechanism [6–8,10], the NG mode is absorbed to the
gauge field, and is pushed to very high energy scale of the
plasma frequency ωp. We can thus regard θ in Eq. (2) to be
an unphysical degree of freedom, which one can eliminate by
taking the unitary gauge,

L = c(∂tH )2 + (ce∗2φ2 − de∗φ)
(
"2

0 + 2"0H
)
+ 2aH 2

− 1
2m∗ (∇H )2 −

e∗2"2
0

2m∗ A2 + e∗2"0

m∗ A2H + · · · . (3)

One can see that the terms ce∗2φ2 and e∗2"2
0

2m∗ A2 represent the
mass of the gauge field generated via the Anderson-Higgs
mechanism.

In the case of electrically neutral superfluids (e∗ = 0),
the Anderson-Higgs mechanism does not occur, so that the
Higgs field mixes with the NG field via the term proportional
to d(∂tθ )H in Eq. (2), and the Higgs mode is no longer
considered to be an isolated excitation. Furthermore, there
are interactions between H and θ via the terms proportional to
c(∂tθ )2H and (∇θ )2H in Eq. (2), which causes the relaxation
of the Higgs into lower energy NG bosons, which makes the
Higgs mode unstable. At this point, it has been often empha-
sized that the particle-hole symmetry is important in forcing

H

A

A

FIG. 1. The Feynman diagram for the interaction vertex that
connects the Higgs field H (dashed line) and electromagnetic field A
(wavy lines).

d ∼ 0 to suppress such a mixing between the Higgs and NG
modes [4,5]. In other words, the Higgs mode is to be protected
by the particle-hole symmetry. However, this argument for
the stability of the Higgs mode is not needed in the case of
charged superconductors (although the particle-hole symmetry
is a good symmetry near the Fermi surface in superconductors),
since the NG field decouples from the Higgs field [in Eq. (3)]
due to the Anderson-Higgs mechanism, as stated above.

Equation (3) suggests that the interaction between the
Higgs and gauge fields is given by φH , φ2H , and A2H .
The linear coupling φH is suppressed in superconductors due
to the inherent particle-hole symmetry (d ∼ 0). The leading
interaction is the second-order process φ2H and A2H , the
latter of which, e.g., is represented by a Feynman diagram
shown in Fig. 1. The nonlinear Higgs-gauge coupling implies
that H describes a scalar boson having no electric charge.
These nonlinear couplings (φ2H and A2H ) have indeed been
used in the discovery of the Higgs particle at the LHC
experiment [15,16] (where A corresponds to the vector bosons
W or Z).

From Eq. (3) (with d = 0), we can derive the equation of
motion for the Higgs field,

(
c∂2

t − 1
2m∗ ∇2

)
H = 2aH + e∗2"0

(
cφ2 − 1

2m∗ A2
)

,

(4)

which is “relativistic” (with an emergent Lorentz symme-
try) [5], meaning that the first time-derivative is absent even
though we started from the nonrelativistic GL Lagrangian (1).
Let us first look at the case of φ = A = 0. By putting
H (r,t) ∼ eiq·r−iωt , we obtain the dispersion relation for the
Higgs mode,

ω(q)2 = −2a

c
+ q2

2m∗c
= ω2

H + q2

2m∗c
, (5)

where the mode is a gapped (massive) excitation with a
characteristic frequency (mass)

ωH =
√

−2a

c
. (6)

From this, one can see that ωH ∝ (Tc − T )1/2 ∝ '. In fact,
the microscopic calculation [1,3] shows that ωH = 2', which
exactly coincides with the lowest energy necessary to create
a pair of Bogoliubov quasiparticles. Using the microscopic
result [17] of b("0/')2 = 3/(4ϵF ) (with ϵF the Fermi energy),
we have c = −2a/(2')2 = 2b"2

0/(2')2 = 3/(8ϵF ). With
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2𝜔 + 𝜔 = 3𝜔 oscillation

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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Third-harmonic generation from Higgs

j(t) = �e⇤2ns(t)
m⇤ A(t)

jNL(t) = �2e⇤2 0
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THz laser experiment
Matsunaga, Tsuji, Aoki, Shimano, et al., Science 345, 1145 (2014)

Generally, collective modes in ordered phases
arising from spontaneous symmetry breaking are
classified into (i) gapless phase modes [Nambu-
Goldstone (NG)mode] and (ii) gapped amplitude
modes (Higgs mode) (5–7). In charged-particle
systems such as superconductors with long-
range Coulomb interactions, the gapless NG
mode becomes massive; that is, its energy is ele-
vated to the plasma frequency as a result of the
coupling to the gauge boson (photon field), which
is referred to as the Anderson-Higgs mechanism
(8, 9). The Higgs amplitude mode in supercon-
ductors has been also studied theoretically
(6, 10–15); because it is not accompanied by
charge fluctuations, it does not couple directly to
electromagnetic fields in the linear response re-
gime. This is why the Higgs mode in conven-
tional s-wave superconductors was observed
only recently after a nonadiabatic excitationwith
a monocycle THz pulse (16); previous observa-
tions were in a special case where the super-
conductivity coexists with charge density wave
that makes the Higgs mode Raman-active (17, 18).
Hence,many questions regarding theHiggsmode
in superconductors remain unresolved: How
does the mode couple to strong electromagnetic
fields in a nonlinear regime? Is it possible to dy-
namically control the Higgs mode and therefore
the superconducting order parameter?
Recent advances in the intense THz genera-

tion technique (19, 20) open a new avenue for
studying matter phases in nonequilibrium con-
ditions. Amplitude- and phase-resolved spectros-
copy using multi-THz pulses has been realized
(21), enabling the study of coherent transients
in many-body systems in low-energy ranges. The
purpose of the present work is to explore co-
herent nonlinear interplay between collective
mode in a superconductor and THz light field
by investigating the real-time evolution of the
order parameter under the driving field of a mul-
ticycle (as opposed to monocycle) THz pulse.
In order to study evolutions on a picosecond

time scale, we performed THz pump–THz probe
spectroscopy (16, 22) (Fig. 1A). To generate an
intense multicycle THz pulse as a coherent driv-
ing source, we first created an intensemonocycle
THz pulse by the tilted-pulse front method with
a LiNbO3 crystal (19, 23). The monocycle pulse
then goes through a band-pass filter to produce a
narrow-spectrum multicycle pulse. Three band-
pass filters are used to generate the different
center frequencies at 0.3, 0.6, or 0.8 THz, respec-

tively, with their power spectra displayed in Fig.
1B. These photon energies are all below the su-
perconducting gap of our NbN sample in the
low-temperature limit, which is 1.3 THz (Fig. 1C);
this implies that the pump pulse does not gen-
erate quasi-particles (QPs) in one-photon pro-
cesses at low temperatures. The sample is an
s-wave superconductor NbN thin filmwith 24-nm
thickness grown on an MgO substrate (24) with
superconducting critical temperature (Tc) = 15 K.
The ultrafast dynamics of the superconducting
order parameter driven by the multicycle pump
pulse is then probed through the transmittance
of a monocycle THz pulse that enters the
sample collinearly with the pump pulse with
a variable time delay. In general, we can detect
the temporal waveform of the transmitted
probe THz electric field, Eprobe, by varying the

time delay of another optical gate pulse and
using the electrooptic (EO) sampling method. In
this experiment, we fixed the timing of the
optical gate pulse such that, in the absence of
the pump, Eprobe at this timing monotonically
changes with temperature, reflecting the change
of the order parameter. Temporal evolution of the
order parameter induced by the THz pump is
sensitively monitored through the change of
Eprobe relative to its value in the absence of the
pump as a function of the pump-probe delay
time, tpp (16, 22); we denote this change as
dEprobe. For details, see (25). In the present case,
we investigated the order parameter dynamics
in the presence of coherently oscillating multi-
cycle pump fields. The temporal waveform of the
pump THz electric field Epump is displayed in
Fig. 1D for the center frequency of w = 0.6 THz
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Generally, collective modes in ordered phases
arising from spontaneous symmetry breaking are
classified into (i) gapless phase modes [Nambu-
Goldstone (NG)mode] and (ii) gapped amplitude
modes (Higgs mode) (5–7). In charged-particle
systems such as superconductors with long-
range Coulomb interactions, the gapless NG
mode becomes massive; that is, its energy is ele-
vated to the plasma frequency as a result of the
coupling to the gauge boson (photon field), which
is referred to as the Anderson-Higgs mechanism
(8, 9). The Higgs amplitude mode in supercon-
ductors has been also studied theoretically
(6, 10–15); because it is not accompanied by
charge fluctuations, it does not couple directly to
electromagnetic fields in the linear response re-
gime. This is why the Higgs mode in conven-
tional s-wave superconductors was observed
only recently after a nonadiabatic excitationwith
a monocycle THz pulse (16); previous observa-
tions were in a special case where the super-
conductivity coexists with charge density wave
that makes the Higgs mode Raman-active (17, 18).
Hence,many questions regarding theHiggsmode
in superconductors remain unresolved: How
does the mode couple to strong electromagnetic
fields in a nonlinear regime? Is it possible to dy-
namically control the Higgs mode and therefore
the superconducting order parameter?
Recent advances in the intense THz genera-

tion technique (19, 20) open a new avenue for
studying matter phases in nonequilibrium con-
ditions. Amplitude- and phase-resolved spectros-
copy using multi-THz pulses has been realized
(21), enabling the study of coherent transients
in many-body systems in low-energy ranges. The
purpose of the present work is to explore co-
herent nonlinear interplay between collective
mode in a superconductor and THz light field
by investigating the real-time evolution of the
order parameter under the driving field of a mul-
ticycle (as opposed to monocycle) THz pulse.
In order to study evolutions on a picosecond

time scale, we performed THz pump–THz probe
spectroscopy (16, 22) (Fig. 1A). To generate an
intense multicycle THz pulse as a coherent driv-
ing source, we first created an intensemonocycle
THz pulse by the tilted-pulse front method with
a LiNbO3 crystal (19, 23). The monocycle pulse
then goes through a band-pass filter to produce a
narrow-spectrum multicycle pulse. Three band-
pass filters are used to generate the different
center frequencies at 0.3, 0.6, or 0.8 THz, respec-

tively, with their power spectra displayed in Fig.
1B. These photon energies are all below the su-
perconducting gap of our NbN sample in the
low-temperature limit, which is 1.3 THz (Fig. 1C);
this implies that the pump pulse does not gen-
erate quasi-particles (QPs) in one-photon pro-
cesses at low temperatures. The sample is an
s-wave superconductor NbN thin filmwith 24-nm
thickness grown on an MgO substrate (24) with
superconducting critical temperature (Tc) = 15 K.
The ultrafast dynamics of the superconducting
order parameter driven by the multicycle pump
pulse is then probed through the transmittance
of a monocycle THz pulse that enters the
sample collinearly with the pump pulse with
a variable time delay. In general, we can detect
the temporal waveform of the transmitted
probe THz electric field, Eprobe, by varying the

time delay of another optical gate pulse and
using the electrooptic (EO) sampling method. In
this experiment, we fixed the timing of the
optical gate pulse such that, in the absence of
the pump, Eprobe at this timing monotonically
changes with temperature, reflecting the change
of the order parameter. Temporal evolution of the
order parameter induced by the THz pump is
sensitively monitored through the change of
Eprobe relative to its value in the absence of the
pump as a function of the pump-probe delay
time, tpp (16, 22); we denote this change as
dEprobe. For details, see (25). In the present case,
we investigated the order parameter dynamics
in the presence of coherently oscillating multi-
cycle pump fields. The temporal waveform of the
pump THz electric field Epump is displayed in
Fig. 1D for the center frequency of w = 0.6 THz
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also shown. (E) dEprobe as a function of tpp in the temperature range 2D(T) < w. Increase of dEprobe cor-
responds to a reduction of the order parameter. (F) dEprobe against tpp in the temperature range 2D(T) > w.
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• THz pump-THz probe spectroscopy

2𝜔 oscillation of the superfluid density
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signal arises from the third harmonic generation
(THG). The THG intensity at 10 K normalized by
that of the incident pump pulse reaches 8 × 10−5,
which is high for a film with only 24-nm thick-
ness and 3.5-kV/cm peak electric field (29). We

could increase the interaction length up to about
0.2 mm, the penetration depth of the sample at
0.6 THz (30), which would result in even higher
conversion efficiency. A shift of THG peak energy
with temperature is discerned in Fig. 3D, which
is attributed to the softening of the Higgs mode
[2D(T)] toward Tc. The THG signal disappears
before the softening completes because the res-
onant enhancement is rapidly suppressed when
D(T ) moves out of the narrow bandwidth of the
incident pump field.
The 2w oscillation of the order parameter and

theTHGwere also observed forw =0.3 and0.8THz
pumping. Figure 4B summarizes the temper-
ature dependence of the THG intensities for w =
0.3, 0.6, and 0.8 THz. For w = 0.3 and 0.6 THz,
the THG signal peaks at 13.5 and 10 K, re-
spectively, whereas the THG signal forw = 0.8 THz
monotonically increases with decreasing tem-
perature. Comparing the temperature dependence
of the order parameter 2D(T) (Fig. 4A) with twice
the pump frequency 2w (=0.6, 1.2, and 1.6 THz),
one can deduce that the peak in the THG does
fall on 2w = 2D(T). The THG intensity in Eq. 5
depends on the change of the order parameter
amplitude, which is resonantly enhanced when
2w approaches the inherent Higgs amplitude
mode 2D(T). Indeed, the temperature depen-
dence of the THG intensity calculated with Eq. 5
and shown in Fig. 4C agrees qualitatively with
experiment in Fig. 4B. We conclude that the
resonance of the Anderson’s pseudospin pre-
cession in the superconductor is achieved by
irradiation of THz pump, which results in large
THG. The theoretical results in Fig. 4C exhibit
sharp resonance peaks, which result from the
lifetime of the Higgs mode assumed to be in-
finite (i.e., power-law decay) within the BCS ap-
proximation (10, 12). In contrast, the observed
resonancewidths in Fig. 4B are finite, whichmay
be caused by decaying channels for the Higgs
mode and the finite spectral width of the pump

pulse (Fig. 1B). There are in fact various possible
decay processes—including scatteringwith single-
particle excitations, impurities, phonons, or low-
frequency NGmode that emerges near Tc (31)—for
which systematic studies are desirable (32).
We last note that superconductors are known

to exhibit highly nonlinear responses near the
critical field or temperature, giving rise to non-
linear I-V characteristics and higher-order harmon-
ics in transport measurements with a frequency
range from a few hertz tomicrowave (33–35). By
contrast, the large nonlinear optical effect re-
vealed here originates from resonance of ac
fields to the collective amplitude mode of the
order parameter, which leads to the strong THG
emission in THz frequency range.
The time-resolved observation of the THz higher-

order harmonics will provide a unique avenue
for probing ultrafast dynamics of the order
parameter in out-of-equilibrium superconduc-
tors. It is highly intriguing to explore the quan-
tum trajectories of the pseudospins on Bloch
sphere in the nonperturbative light-matter in-
teraction regime with much higher THz fields,
which would result in a dynamics of supercon-
ducting order parameter not attained in con-
ventional regimes. The present scheme using
the nonlinear coupling between pseudospins and
light can be also extended to unconventional
superconductors, such as the cuprate or iron-
pnictide, whichwould provide new insight about
the high-Tc superconductivity and the interplay
between the superconducting phase and other
coexisting or competing orders.
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signal arises from the third harmonic generation
(THG). The THG intensity at 10 K normalized by
that of the incident pump pulse reaches 8 × 10−5,
which is high for a film with only 24-nm thick-
ness and 3.5-kV/cm peak electric field (29). We

could increase the interaction length up to about
0.2 mm, the penetration depth of the sample at
0.6 THz (30), which would result in even higher
conversion efficiency. A shift of THG peak energy
with temperature is discerned in Fig. 3D, which
is attributed to the softening of the Higgs mode
[2D(T)] toward Tc. The THG signal disappears
before the softening completes because the res-
onant enhancement is rapidly suppressed when
D(T ) moves out of the narrow bandwidth of the
incident pump field.
The 2w oscillation of the order parameter and

theTHGwere also observed forw =0.3 and0.8THz
pumping. Figure 4B summarizes the temper-
ature dependence of the THG intensities for w =
0.3, 0.6, and 0.8 THz. For w = 0.3 and 0.6 THz,
the THG signal peaks at 13.5 and 10 K, re-
spectively, whereas the THG signal forw = 0.8 THz
monotonically increases with decreasing tem-
perature. Comparing the temperature dependence
of the order parameter 2D(T) (Fig. 4A) with twice
the pump frequency 2w (=0.6, 1.2, and 1.6 THz),
one can deduce that the peak in the THG does
fall on 2w = 2D(T). The THG intensity in Eq. 5
depends on the change of the order parameter
amplitude, which is resonantly enhanced when
2w approaches the inherent Higgs amplitude
mode 2D(T). Indeed, the temperature depen-
dence of the THG intensity calculated with Eq. 5
and shown in Fig. 4C agrees qualitatively with
experiment in Fig. 4B. We conclude that the
resonance of the Anderson’s pseudospin pre-
cession in the superconductor is achieved by
irradiation of THz pump, which results in large
THG. The theoretical results in Fig. 4C exhibit
sharp resonance peaks, which result from the
lifetime of the Higgs mode assumed to be in-
finite (i.e., power-law decay) within the BCS ap-
proximation (10, 12). In contrast, the observed
resonancewidths in Fig. 4B are finite, whichmay
be caused by decaying channels for the Higgs
mode and the finite spectral width of the pump

pulse (Fig. 1B). There are in fact various possible
decay processes—including scatteringwith single-
particle excitations, impurities, phonons, or low-
frequency NGmode that emerges near Tc (31)—for
which systematic studies are desirable (32).
We last note that superconductors are known

to exhibit highly nonlinear responses near the
critical field or temperature, giving rise to non-
linear I-V characteristics and higher-order harmon-
ics in transport measurements with a frequency
range from a few hertz tomicrowave (33–35). By
contrast, the large nonlinear optical effect re-
vealed here originates from resonance of ac
fields to the collective amplitude mode of the
order parameter, which leads to the strong THG
emission in THz frequency range.
The time-resolved observation of the THz higher-

order harmonics will provide a unique avenue
for probing ultrafast dynamics of the order
parameter in out-of-equilibrium superconduc-
tors. It is highly intriguing to explore the quan-
tum trajectories of the pseudospins on Bloch
sphere in the nonperturbative light-matter in-
teraction regime with much higher THz fields,
which would result in a dynamics of supercon-
ducting order parameter not attained in con-
ventional regimes. The present scheme using
the nonlinear coupling between pseudospins and
light can be also extended to unconventional
superconductors, such as the cuprate or iron-
pnictide, whichwould provide new insight about
the high-Tc superconductivity and the interplay
between the superconducting phase and other
coexisting or competing orders.
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Resonance at 2𝜔=2Δ



Outline of the talk

• Introduction: Higgs amplitude mode in superconductors 

• Higgs mode vs charge density fluctuation (CDF)  

• Experimental discrimination by polarization-resolved THG  

• A mechanism of enhancing the light-Higgs coupling 
　— Phonon retardation effect



• According to BCS theory, Higgs-mode energy is degenerate with the 
lower bound of the quasiparticle continuum (2Δ).

E

k
0

Higgs mode

quasiparticle 
continuum

2�
2𝜔

Higgs mode vs CDF

• Laser may excite not only Higgs but also charge density fluctuation (CDF).

pair breaking

→ CDF



Polarization dependence of  THG

• CDF and Higgs have different polarization-angle dependence for THG 
resonance. Cea, Castellani, Benfatto, Phys. Rev. B 93, 180507 (2016)

𝜔

3𝜔

single crystal thin film

eI



Polarization dependence of CDF

• In general, CDF has polarization dependence relative to the crystal 
axis since it depends on the band structure of the material.

• CDF also has a THG component with polarization perpendicular to 
that of the incoming wave. Matsunaga, Tsuji et al., arXiv:1703.02815.

𝜔

3𝜔

eI

eOeI



Polarization dependence of Higgs

• Higgs is a scalar boson, and does not have polarization dependence.

• Higgs always induces THG with polarization parallel to that of the 
incoming wave.

𝜔

3𝜔

eI

eOeI =

F = �2aH2 +
1

2m⇤ (rH)2 � e⇤2 2
0

2m⇤ A2 +
e⇤2 0

m⇤ A2H + · · ·

jNL(t) = �2e⇤2 0

m⇤ H(t)A(t)



General Polarization dependence

𝜔

3𝜔

eI

eO

13 
 

 
 eI = eO = eθ eI = eθ, eO = eθ+90° 

CDF A(ω)+2B(ω)sin22θ B(ω)sin4θ 
Higgs C(ω) 0 
 
Table 1 
 
 
 

Matsunaga, Tsuji et al., arXiv:1703.02815.
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Polarization-resolved spectroscopy
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Matsunaga, Tsuji et al., arXiv:1703.02815.



Polarization dependence of THG

• THG intensity is quite isotropic, and does not depend on the polarization.  
← It implies that the Higgs is a dominant contribution to THG.

Matsunaga, Tsuji et al., arXiv:1703.02815.
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Polarization dependence of THG
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• Introduction: Higgs amplitude mode in superconductors 

• Higgs mode vs charge density fluctuation (CDF)  

• Experimental discrimination by polarization-resolved THG  

• A mechanism of enhancing the light-Higgs coupling 
　— Phonon retardation effect



Higgs mode vs CDF

• In BCS theory, for a general lattice with a general laser polarization 
CDF has much stronger coupling to light than Higgs.

Cea, Castellani, Benfatto, Phys. Rev. B 93, 180507 (2016)

• Why is the Higgs mode contribution to THG so dominant for NbN?

• NbN is known to have a strong electron-phonon coupling (λ~1).

Kihlstrom, Simon, Wolf, PRB 32, 1843 (1985); Bronson et al., PRL 64, 2172 (1990); 
Chockalingam et al., PRB 77, 214503 (2008).

• Is there any mechanism to enhance the light-Higgs coupling?



Retardation effect

A(t)2

A(t)

A(t’ )

non-resonant 
light-matter coupling

resonant 
light-matter coupling

• Un-retarded pairing

• Retarded pairing



2

(a)

(b)

(c)

FIG. 1: Feyman diagrams for the non-resonant (a), mixed (b), and
resonant (c) contributions to the THG susceptibility containing the
e↵ect of collective modes as vertex corrections. The solid (wavy)
lines represent the electron (photon) propagators, while the shaded
boxes represent the reducible four-point vertex function. Among the
four photon lines, one is outgoing with an energy 3⌦, and the other
three are incoming with an energy ⌦.

Then the next question is: what will happen if one goes
beyond the BCS approximation. In fact, the superconductor
NbN used in the experiments9,12 is known to have a strong
electron-phonon coupling (� ⇠ 1),55–57 where it is impor-
tant to understand potential corrections from the BCS anal-
ysis. The argument in the previous paragraph essentially re-
lies on the speciality of BCS: the (nonlinear) coupling to the
light is provided only in a non-resonant form ✏̈kA(t)2 rather
than a resonant form ✏̇kA(t)✏̇kA(t0), where A(t) = A(t)e is
the vector potential, and ✏̇k =

P
i(@✏k/@ki)ei. The terminol-

ogy is here borrowed from literatures on Raman scattering.58

These forms can be expressed as diagrams for the THG
susceptibility59 in Fig. 1 (which looks very much like Raman-
scattering diagrams58), where the e↵ect of collective modes
is incorporated in the vertex correction, with the Higgs mode
represented by an infinite series of ring diagrams in the ⌧1
channel.22,24,41,44 Two photon lines attached together to elec-
tron lines represent the non-resonant coupling, while two
single-photon lines attached separately represent the resonant
coupling.

In the BCS theory, there is only the non-resonant coupling1,

1 This can be understood by Anderson’s pseudospin picture.12,15,44 The
time-dependent BCS theory is equivalent to the pseudospin dynamics
described by @�k/@t = 2bk ⇥ �k, where �k is the pseudospin, and
bk = (�Re�,�Im�, (✏k+A(t) + ✏k�A(t))/2) is the pseudomagnetic field.
The coupling to the light is provided by the z component of the pseudomag-

and the mixed [Fig. 1(b)] and resonant (c) contributions to
THG exactly vanish. This is confirmed by explicitly calculat-
ing the convolution of the three electron propagators,

Z
d!
2⇡

Tr[⌧1Ĝk(! + 2⌦)Ĝk(! +⌦)Ĝk(!)]< = 0 (BCS).

(5)

However, this does not guarantee that these contributions
would remain small if one goes beyond the BCS approxima-
tion. For example, the real part of the optical conductivity
�(⌦) vanishes for ⌦ , 0 within the BCS theory, since

Z
d!
2⇡

Tr[Ĝk(! +⌦)Ĝk(!)]< = 0 (BCS), (6)

in much the same way as in Eq. (5). In reality, on the other
hand, the real part of the optical conductivity is nonzero and
not even small.9,60 They become nonzero when one takes ac-
count of dynamical correlations such as the electron-phonon
coupling (producing retarded interactions) or impurity scat-
tering. In those situations, we can expect that the resonant
and mixed contributions to the THG response may also be
nonzero. Indeed, it has been shown in the study of Raman
scattering for correlated electron systems that the resonant
contribution can significantly enhance the non-resonant Ra-
man response.61,62

This has motivated us to study the nonlinear optical re-
sponse of superconductors for electron-phonon coupled sys-
tems beyond the BCS approximation. Theoretically, it is
quite challenging to evaluate all of the non-resonant, mixed
and resonant diagrams including the four-point vertex on an
equal footing, since the vertex carries three independent mo-
menta and frequencies. Therefore, we employ the dynamical
mean-field theory (DMFT),63 which assumes the momentum-
independent self-energy and vertex function. Still the calcu-
lation is quite demanding if one tries to evaluate the nonlin-
ear response function by solving the Bethe-Salpeter equation
and performing analytical continuation. In higher dimensions
in the thermodynamic limit an analysis including the ver-
tex correction has so far been performed only in exceptional
cases such as the Raman response of the Falicov-Kimball
model.61,62,64,65 For the Hubbard model, the nonlinear optical
response has been analyzed by Hartree-Fock approximation,66

by DMFT without considering vertex corrections,67,68 and by
exact diagonalization for small finite-size systems.69,70 For
the Holstein model, higher harmonic generation has been
studied by Migdal approximation without considering ver-
tex corrections.71 For 1D Hubbard-Holstein model, THG re-
sponse has been studied by the density-matrix renormalization
group.72

In this paper, we propose an e�cient way to calculate the
vertex correction for nonlinear optical susceptibilities, which
we call the “dotted DMFT”73, without directly solving the

netic field, ✏k+ ✏̈kA(t)2/2+O(A4), which is in the form of the non-resonant
coupling.

Non-resonant coupling

Resonant coupling

Mixed coupling

3⌦
⌦

⌦ ⌦

BCS (clean limit) Beyond BCS

✔ ✔

Higgs diagrams

✔

✔

🚫

🚫



BCS (clean limit) Beyond BCSOptical conductivity

(a) Diamagnetic term

(b) Paramagnetic term

✔ ✔

✔🚫

Re�(! , 0) = 0 , 0
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FIG. 5: The single-particle spectrum A(!/2) and the dynamical pair
susceptibility �Im �R

pair(!) calculated by the (dotted) DMFT for the
superconducting phase of the Holstein model with g = 0.8,!0 =
0.6, T = 0.02, � = 0.2, and � = 0.005.

are taken to be g = 0.8, !0 = 0.6, � = 0.2, and � = 0.005. This
corresponds to the e↵ective interaction of � = 0.77 [Eq. (11)],
which is in the moderately correlated regime. The temperature
is set to be T = 0.02, which is low enough so that the system is
in the superconducting state. The polarization (16) is chosen
to be a general direction ↵ = 0.5 without having a bias on the
pair breaking e↵ect.

In Fig. 5, we show the single-particle spectrum A(!) =
�Im GR

11(!)/⇡ (red curve) and the dynamical pair susceptibil-
ity �Im �R

pair(!) (52) (blue with the dots), with the latter cal-
culated by the dotted DMFT. Previously, the dynamical pair
susceptibility has been evaluated from the real-time simula-
tion of the nonequilibrium DMFT,48 which is one way to avoid
solving the complicated Bethe-Salpeter equation for the ver-
tex correction. Here the dotted DMFT serves as an alternative
e�cient method.

As one can see in Fig. 5, the single-particle spectrum shows
the superconducting gap 2� ⇡ 0.12 [note that we plot A(!/2)
in Fig. 5] with the coherence peak at the edge of the band gap.
The pair susceptibility also shows a clear gap structure with a
resonance peak at ! = 2�. The result is in agreement with the
one previously reported.48,51 The resonance peak is produced
by the vertex correction, which is immediately confirmed by
the comparison to the bare susceptibility. This suggests that
the peak in �R

pair(!) represents the collective oscillation of the
pairing amplitude with the frequency 2�, which can be iden-
tified as the Higgs amplitude mode. The coincidence of the
single-particle and two-particle gaps (up to the factor 2) holds
beyond the BCS approximation, as observed in the previous
study.48,51

The results of the THG susceptibility |�|2 (proportional to
the THG intensity observed in experiments) calculated by the
dotted DMFT are plotted in Fig. 6. We show the data for
each term �(i)

0 (i = 1, . . . , 5) and �(i)
vc (i = 1, 2). First of all,

we can see that all the terms contribute to the THG response,
which is in sharp contrast to the BCS approximation where �(i)

0
(i = 2, 4, 5) and �(2)

vc identically vanish. In particular, �(3)
0 , �(5)

0
and �(2)

vc exhibit dominant contributions. The resonance peak

FIG. 6: The THG susceptibility decomposed into the bare suscep-
tibilities �(i)

0 (i = 1, . . . , 5) and vertex corrections �(i)
vc (i = 1, 2) for

the superconducting phase of the Holstein model calculated with the
dotted DMFT. The parameters are the same as in Fig. 5. The po-
larization direction of the laser field is taken to be ↵ = 0.5. The
susceptibilities are normalized by �⇤ = t⇤/d2. The inset is a blowup
of �(1)

vc .

exists at⌦ = � ⇡ 0.06 in the spectra of �(3)
0 , �(1)

vc , and �(2)
vc . The

peak of �(3)
0 can be interpreted as individual excitations due to

Cooper pair breaking, while the peaks of �(1)
vc and �(2)

vc can be
interpreted as collective excitations resonating with the Higgs
amplitude mode since it is the only known collective mode at
the energy of 2�. As expected from the BCS approximation,49

the e↵ect of �(1)
vc is a few orders of magnitude smaller than

that of �(3)
0 (see the inset of Fig. 6) if one chooses a general

polarization direction (here ↵ = 0.5). On the other hand, the
contribution of �(2)

vc , which has been absent in the BCS approx-
imation, is quite significant, and can be even larger than that of
�(3)

0 . This result implies that factors that are not taken into ac-
count in the BCS approximation, such as the retarded nature
of the pairing interaction through the electron-phonon cou-
pling, can make the Higgs mode a prominent component in the
THG spectrum. The corrections from the BCS theory are not
necessarily small but can be drastic (at least when the electron-
phonon coupling is large enough). We again note that NbN,
which is experimentally used in Refs. 9,12, has the strong
electron-phonon coupling,55–57 and such corrections from the
BCS analysis should be seriously taken into account. �(5)

0 is
also not negligible, but it does not bring the resonance with
the Higgs mode at ⌦ = �. The increase of the spectral weight
towards the low frequency (especially for �(5)

0 and �(2)
vc ) is due

to the presence of nonzero �, with which the system accom-
modates low-energy excitations. It can be suppressed when
� is reduced, so that we can ignore the low-energy features.
Note that here we cannot take the limit of � ! +0, since the
dotted DMFT becomes numerically unstable when the value
of � becomes too small.

Figure 7 plots the total THG susceptibility |�|2 = |�0+�vc|2
compared with the total bare susceptibility |�0|2. Here we sub-
tract the low-energy increase of the spectral weight of �(5)

0 at
⌦ < 0.055 from �0, which is out of our interest and could be

Model of el-ph system

H =
X

i j,�

ti j(c†i�c j� + h.c.) � µ
X

i

ni + !0
X

i

b†i bi + g
X

i

(bi + b†i )(ni � 1)

• Holstein model

Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016)g = 0.8,!0 = 0.6,T = 0.02, � = 0.2, � = 0.005

Higgs mode

2Δ

(� = 0.77)

: dynamical pair susceptibility

: single particle spectrum
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FIG. 5: The single-particle spectrum A(!/2) and the dynamical pair
susceptibility �Im �R

pair(!) calculated by the (dotted) DMFT for the
superconducting phase of the Holstein model with g = 0.8,!0 =
0.6, T = 0.02, � = 0.2, and � = 0.005.

are taken to be g = 0.8, !0 = 0.6, � = 0.2, and � = 0.005. This
corresponds to the e↵ective interaction of � = 0.77 [Eq. (11)],
which is in the moderately correlated regime. The temperature
is set to be T = 0.02, which is low enough so that the system is
in the superconducting state. The polarization (16) is chosen
to be a general direction ↵ = 0.5 without having a bias on the
pair breaking e↵ect.

In Fig. 5, we show the single-particle spectrum A(!) =
�Im GR

11(!)/⇡ (red curve) and the dynamical pair susceptibil-
ity �Im �R

pair(!) (52) (blue with the dots), with the latter cal-
culated by the dotted DMFT. Previously, the dynamical pair
susceptibility has been evaluated from the real-time simula-
tion of the nonequilibrium DMFT,48 which is one way to avoid
solving the complicated Bethe-Salpeter equation for the ver-
tex correction. Here the dotted DMFT serves as an alternative
e�cient method.

As one can see in Fig. 5, the single-particle spectrum shows
the superconducting gap 2� ⇡ 0.12 [note that we plot A(!/2)
in Fig. 5] with the coherence peak at the edge of the band gap.
The pair susceptibility also shows a clear gap structure with a
resonance peak at ! = 2�. The result is in agreement with the
one previously reported.48,51 The resonance peak is produced
by the vertex correction, which is immediately confirmed by
the comparison to the bare susceptibility. This suggests that
the peak in �R

pair(!) represents the collective oscillation of the
pairing amplitude with the frequency 2�, which can be iden-
tified as the Higgs amplitude mode. The coincidence of the
single-particle and two-particle gaps (up to the factor 2) holds
beyond the BCS approximation, as observed in the previous
study.48,51

The results of the THG susceptibility |�|2 (proportional to
the THG intensity observed in experiments) calculated by the
dotted DMFT are plotted in Fig. 6. We show the data for
each term �(i)

0 (i = 1, . . . , 5) and �(i)
vc (i = 1, 2). First of all,

we can see that all the terms contribute to the THG response,
which is in sharp contrast to the BCS approximation where �(i)

0
(i = 2, 4, 5) and �(2)

vc identically vanish. In particular, �(3)
0 , �(5)

0
and �(2)

vc exhibit dominant contributions. The resonance peak

χ0
(1)

χ0
(2)

χ0
(3)

χ0
(4)

χ0
(5)

χvc(1)

χvc(2)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ω

|χ
2

0.05 0.1
0

0.01

0.02

0.03

FIG. 6: The THG susceptibility decomposed into the bare suscep-
tibilities �(i)

0 (i = 1, . . . , 5) and vertex corrections �(i)
vc (i = 1, 2) for

the superconducting phase of the Holstein model calculated with the
dotted DMFT. The parameters are the same as in Fig. 5. The po-
larization direction of the laser field is taken to be ↵ = 0.5. The
susceptibilities are normalized by �⇤ = t⇤/d2. The inset is a blowup
of �(1)

vc .

exists at⌦ = � ⇡ 0.06 in the spectra of �(3)
0 , �(1)

vc , and �(2)
vc . The

peak of �(3)
0 can be interpreted as individual excitations due to

Cooper pair breaking, while the peaks of �(1)
vc and �(2)

vc can be
interpreted as collective excitations resonating with the Higgs
amplitude mode since it is the only known collective mode at
the energy of 2�. As expected from the BCS approximation,49

the e↵ect of �(1)
vc is a few orders of magnitude smaller than

that of �(3)
0 (see the inset of Fig. 6) if one chooses a general

polarization direction (here ↵ = 0.5). On the other hand, the
contribution of �(2)

vc , which has been absent in the BCS approx-
imation, is quite significant, and can be even larger than that of
�(3)

0 . This result implies that factors that are not taken into ac-
count in the BCS approximation, such as the retarded nature
of the pairing interaction through the electron-phonon cou-
pling, can make the Higgs mode a prominent component in the
THG spectrum. The corrections from the BCS theory are not
necessarily small but can be drastic (at least when the electron-
phonon coupling is large enough). We again note that NbN,
which is experimentally used in Refs. 9,12, has the strong
electron-phonon coupling,55–57 and such corrections from the
BCS analysis should be seriously taken into account. �(5)

0 is
also not negligible, but it does not bring the resonance with
the Higgs mode at ⌦ = �. The increase of the spectral weight
towards the low frequency (especially for �(5)

0 and �(2)
vc ) is due

to the presence of nonzero �, with which the system accom-
modates low-energy excitations. It can be suppressed when
� is reduced, so that we can ignore the low-energy features.
Note that here we cannot take the limit of � ! +0, since the
dotted DMFT becomes numerically unstable when the value
of � becomes too small.

Figure 7 plots the total THG susceptibility |�|2 = |�0+�vc|2
compared with the total bare susceptibility |�0|2. Here we sub-
tract the low-energy increase of the spectral weight of �(5)

0 at
⌦ < 0.055 from �0, which is out of our interest and could be

g = 0.8,!0 = 0.6,T = 0.02, � = 0.2, � = 0.005
↵ = 0.5Polarization:
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For the notation of < for products of nonequilibrium Green’s functions, see Appendix A. Note that �(i)
0 (i = 1, . . . , 5) do not

contain ⌃̈, so that they can be computed independently of the dotted DMFT. The vertex corrections are also explicitly derived as

�(1)
vc (⌦) = � i

2

X

k

Z
d!
2⇡

[✏̈kGk(! + 2⌦)⌃̈(!;⌦)Gk(!)]<, (49)

�(2)
vc (⌦) = � i

2

X

k

Z
d!
2⇡

[✏̇kGk(! + 3⌦)⌃̈(! +⌦;⌦)Gk(! +⌦)✏̇kGk(!) + ✏̇kGk(! + 3⌦)✏̇kGk(! + 2⌦)⌃̈(!;⌦)Gk(!)]<. (50)

χ0(1)= χ0(2)= χ0(3)=

χ0(4)= χ0(5)=

χvc(1)=
¨
Σ χvc(2)=

¨
Σ

FIG. 4: Feynman diagrams for the susceptibility for the third-
harmonic generation. There are five (two) topologically di↵erent di-
agrams for the bare susceptibility �0 (vertex correction �vc). Solid
and wavy lines represent the electron and external photon propaga-
tors, respectively, while the shaded box represents the vertex correc-
tion ⌃̈. Among the four photon lines, one is outgoing with an energy
3⌦, and the other three are incoming with an energy ⌦. The photon
lines attached directly to the vertex are incoming.

Using the momentum integral formulae listed in the appendix
B, one can show that �(4)

0 , �(5)
0 , �(1)

vc , and �(2)
vc do not depend on

the polarization parameter ↵, while �(1)
0 , �(2)

0 , and �(3)
0 do.

The algorithm can be generalized to arbitrary higher or-
ders of the derivatives; they are determined from lower order
[(G,⌃) ! (G̈, ⌃̈) ! (

....
G ,

....
⌃ )] by the hierarchical structure of

the dotted DMFT self-consistency defined at each derivative
order. Essentially the same method has been used to evalu-
ate the optical conductivity for periodically driven systems in
Floquet DMFT,78 where Ġ and ⌃̇ are needed. The first deriva-
tive can be nonzero since the parity symmetry is broken by the
presence of the external driving field.

So far, we have formulated the dotted DMFT for the normal
phase, but it is straightforward to extend the approach to the
superconducting phase. There, we have to impose the follow-
ing modifications: Green’s function and the self-energy are
represented by 2 ⇥ 2 matrices (Nambu-Gor’kov formalism),
✏k, ✏̈k, and

....
✏ k that have appeared in the dotted DMFT are

multiplied by ⌧3 (the third component of the Pauli matrices),
and the dotted impurity solution (35) for the Holstein model

is replaced by
¨̂⌃<,>(t;⌦) = ig2D<,>0 (t)⌧3

¨̂G<,>(t;⌦)⌧3. (51)

Let us finally comment on the generality of the present for-
mulation. Although we describe the dotted DMFT formula-
tion for the THG susceptibility, it is not restricted to THG but
can be generalized to arbitrary dynamical response functions.
One can introduce an infinitesimal external field (not neces-
sarily an electric field), and take the derivative with respect to
it for observables. It may contain the derivative of the self-
energy, which can be evaluated by the corresponding dotted
DMFT, where the DMFT self-consistency equations are dif-
ferentiated with respect to the external field. For example, the
dynamical pair susceptibility,40,48

�R
pair(⌦) = �i

Z 1

0
dte�i⌦th[B0(t), B0(0)]i, (52)

is defined as the response of the pairing amplitude hB0i against
an external pair potential Hex(t) = "B0e�i⌦t, where

B0 =
X

i

(c†
i"c†

i# + ci#ci") (53)

is the bosonic pairing operator with the center-of-mass mo-
mentum q = 0. This quantity detects collective amplitude
oscillations of the superconducting order parameter. The dot-
ted DMFT is constructed by di↵erentiating the DMFT self-
consistency with respect to the pair field potential. The result-
ing dotted lattice Dyson equation reads

˙̂GR,A,<,>(!;⌦) =
X

k

{Ĝk(! +⌦)[⌧1 +
˙̂⌃(!;⌦)]Ĝk(!)}R,A,<,>,

(54)

where we adopt an extended notation of (⌧1)R,A = ⌧1 and
(⌧1)<,> = 0. Once the dotted DMFT is solved, the dynami-
cal pair susceptibility can be calculated as

�R
pair(⌦) = �i

Z
d!
2⇡

Tr[⌧1
˙̂G<(!;⌦)]. (55)

In the next section, we demonstrate the results obtained by
the dotted DMFT for the THG susceptibility along with the
dynamical pair susceptibility.

IV. RESULTS

Let us now turn to the results of the dotted DMFT for the
superconducting phase of the Holstein model. The parameters

Higgs mode

CDF

Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016)

Higgs mode

CDF

Higgs mode can contribute to THG resonance with an order of magnitude 
comparable or even larger than the contribution of CDF.
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FIG. 7: The intensity of the third-harmonic generation for the su-
perconducting phase of the Holstein model calculated by the dotted
DMFT. The bubble contribution (�0) and the total susceptibility in-
cluding the vertex corrections (�0 +�vc) are plotted respectively. The
parameters are taken to be the same as those of Fig. 5. The polariza-
tion direction of the laser field is taken to be ↵ = 0.5.

removed by reducing �. We can see that both � and �0 ex-
hibit a conspicuous resonance peak at ⌦ = �. Although the
position and shape of the peak does not change so much be-
tween �0 and �, the peak height does. With the parameters
taken in the present case, the height of � is enhanced as large
as about four times that of �0 due to the resonance with the
Higgs mode. The main contribution comes from �(2)

vc , as can
be seen in Fig. 6. The resonance width of �0 is broadened as
compared to that of �(3)

0 due to the spectral weight of �(5)
0 dis-

tributed around the peak. The amplitude ratio between �0 and
�vc can depend on various model parameters, but at least there
is such a possibility in a certain realistic parameter regime that
the vertex correction has a non-negligible e↵ect.

We are now in position to make a comparison between the
results of DMFT and BCS theory by calculating the THG
susceptibility within the BCS approximation for the same
parameter set as those of DMFT. The electron-phonon cou-
pling is translated into a static attractive interaction with U =
2g2!0/(!2

0 + �
2) [see Eqs. (9) and (10)]. In the gap equation,

we perform the momentum integral in the range of |✏k|  !0.
The results are depicted in Fig. 8, indicating that the e↵ect
of the vertex correction is rather small compared to the bare
susceptibility �0 in the BCS theory if one considers a general
polarization direction (↵ = 0.5 here). The resonance width
is much sharper and the peak height is higher in BCS than
in DMFT since the THG susceptibility diverges at ⌦ = � in
the � ! 0 limit in BCS theory. These are consistent with
the previous studies.44,49 However, it is far di↵erent from the
result of DMFT (Fig. 7), which takes account of dynamical
correlation e↵ects. This is simply because �(2)

vc is absent in the
BCS approximation, whereas it is generally non-negligible if
one considers the retarded interaction via the electron-phonon
coupling or other e↵ects that are not included in the BCS ap-
proximation (such as impurity scattering, Coulomb interac-
tion, etc.). Our results suggest that one needs to seriously
examine the e↵ect of �(2)

vc , or in other words the contribution

FIG. 8: The intensity of the third-harmonic generation for the super-
conducting phase of the Holstein model calculated within the BCS
approximation. The bubble contribution (�0) and the total suscepti-
bility including the vertex corrections (�0 + �vc) are plotted respec-
tively. The parameters are taken to be the same as in Fig. 5. The
polarization direction of the laser field is taken to be ↵ = 0.5. Note
the di↵erence in the scales of the axes from Fig. 7.

from the resonant diagram [Fig. 1(c)], in further studies of the
THG and other nonlinear optical responses of strongly corre-
lated superconductors.

V. SUMMARY

To summarize, we have studied the nonlinear optical re-
sponse, especially the third-harmonic generation, for electron-
phonon coupled superconductors by means of the dotted
DMFT framework proposed in the present paper. The re-
sults show that, for general polarization of the light, there is
a possibility that the Higgs amplitude mode can contribute to
the THG resonance at 2⌦ = 2� with an order of magnitude
comparable to contributions from the Cooper pair breaking or
charge density fluctuations, which is in sharp contrast to the
BCS result. The interaction between the light and Higgs mode
can be mediated by the resonant coupling, which is induced
by the retarded interaction through the electron-phonon cou-
pling. This is just one of many possibilities that could enhance
the Higgs-mode e↵ect. Others may include phonon renor-
malization, impurity scattering, dynamical correlation e↵ects
from the Coulomb interaction, non-local correlations beyond
DMFT, etc.

To make a relevance to the experiment,12 one is interested in
the temperature dependence of the THG susceptibility. How-
ever, we expect that this strongly depends on the details of
the model, since our model only includes a single mode of
optical phonons while in realistic situations acoustic phonons
may play an important role at low temperatures. The temper-
ature dependence may also be a↵ected by the mechanism of
energy dissipation. In this paper, we have assumed a simple
dissipation characterized by the broadening parameters � and
�, but it can be more complicated in real systems. Moreover,
the present method has a numerical instability when � or � ap-
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THG and other nonlinear optical responses of strongly corre-
lated superconductors.

V. SUMMARY

To summarize, we have studied the nonlinear optical re-
sponse, especially the third-harmonic generation, for electron-
phonon coupled superconductors by means of the dotted
DMFT framework proposed in the present paper. The re-
sults show that, for general polarization of the light, there is
a possibility that the Higgs amplitude mode can contribute to
the THG resonance at 2⌦ = 2� with an order of magnitude
comparable to contributions from the Cooper pair breaking or
charge density fluctuations, which is in sharp contrast to the
BCS result. The interaction between the light and Higgs mode
can be mediated by the resonant coupling, which is induced
by the retarded interaction through the electron-phonon cou-
pling. This is just one of many possibilities that could enhance
the Higgs-mode e↵ect. Others may include phonon renor-
malization, impurity scattering, dynamical correlation e↵ects
from the Coulomb interaction, non-local correlations beyond
DMFT, etc.

To make a relevance to the experiment,12 one is interested in
the temperature dependence of the THG susceptibility. How-
ever, we expect that this strongly depends on the details of
the model, since our model only includes a single mode of
optical phonons while in realistic situations acoustic phonons
may play an important role at low temperatures. The temper-
ature dependence may also be a↵ected by the mechanism of
energy dissipation. In this paper, we have assumed a simple
dissipation characterized by the broadening parameters � and
�, but it can be more complicated in real systems. Moreover,
the present method has a numerical instability when � or � ap-
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FIG. 8. The intensity of the third-harmonic generation for the
superconducting phase of the Holstein model calculated within the
BCS approximation. The bubble contribution (χ0) and the total
susceptibility including the vertex corrections (χ0 + χvc) are plotted,
respectively. The parameters are taken to be the same as in Fig. 5.
The polarization direction of the laser field is taken to be α = 0.5.
Note the difference in the scales of the axes from Fig. 7.

because χ (2)
vc is absent in the BCS approximation, whereas

it is generally non-negligible if one considers the retardation
in the phonon-mediated interaction (or other effects that are
not included in the BCS approximation such as impurity
scattering, Coulomb interaction, etc.).

To confirm that the retardation effect is essential in enhanc-
ing the contribution of the Higgs mode to the THG resonance,
we calculate the ω0 dependence of the THG susceptibility.
Here we focus on χ

(3)
0 ($) and χ (2)

vc ($) that are in charge of
the resonance structures at $ = %. A systematic comparison
between the susceptibilities at different ω0 is made by tuning
the electron-phonon coupling g such that the superconducting
gap is fixed to a constant (2% ≈ 0.12). In Fig. 9, we plot the
height of the resonance peak for |χ (3)

0 ($)|2 and |χ (2)
vc ($)|2 as

| 0
(3)( = ) 2

| vc
(2)( = ) 2
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FIG. 9. Phonon-frequency dependence of |χ (3)
0 |2 and |χ (2)

vc |2 at the
resonance ($ = %) for the superconducting phase of the Holstein
model with T = 0.02, γ = 0.2, and δ = 0.005. The polarization
direction of the laser field is taken to be α = 0.5. We tune g for
each ω0 such that the superconducting gap is fixed to a constant
(2% ≈ 0.12).

a function of the phonon frequency ω0 (with the parameters
other than ω0 and g the same as in Fig. 6). We can see that, as
ω0 decreases and the effective interaction (9) becomes more
retarded, the resonance for χ (2)

vc is enhanced, while that for χ
(3)
0

is suppressed. This is consistent with the expectation that in
the opposite antiadiabatic (nonretarded) limit (ω0 → ∞) the
model approaches the attractive Hubbard model, where the
Migdal approximation is replaced by the BCS approximation,
and χ (2)

vc vanishes as explained in Sec. I. The result suggests that
the retardation effect in the electron-phonon coupling indeed
plays a crucial role in amplifying the vertex correction χ (2)

vc .
We can elaborate on the physical meaning of the result as

follows. As we discussed previously, the dominant diagram
contained in χ (2)

vc is the one with the resonant coupling to the
light [Fig. 1(c)]. This represents a process in which a single
photon is absorbed and then emitted by electrons at different
times [with the time separation ∼ (2%)−1]. The retardation
effect due to the scattering of phonons (in the time scale of
ω−1

0 ) can propagate between these times. If 2% (≈0.12 in
the present case) and ω0 are in the same order, the scattering
amplitude relevant for the THG resonance can be effectively
enhanced, as confirmed from the result in Fig. 9. Note that the
resonance between coherent phonons and the order parameter
oscillation in the regime of ω0 ∼ 2% has been discussed in
Ref. [32].

V. SUMMARY

To summarize, we have studied the nonlinear optical re-
sponse, especially the third-harmonic generation, for electron-
phonon coupled superconductors by means of the dotted
DMFT framework proposed in the present paper. The results
show that, for general polarization of the light, there is a
possibility that the Higgs amplitude mode can contribute to
the THG resonance at 2$ = 2% with an order of magnitude
comparable to contributions from the Cooper pair breaking or
charge density fluctuations, which is in sharp contrast to the
BCS result. The interaction between the light and Higgs mode
can be mediated by the resonant coupling, which is induced by
the retarded interaction through the electron-phonon coupling.
This is confirmed by the observation that the intensity of the
THG resonance due to the Higgs mode does indeed increase as
the phonon frequency is reduced. Let us note that the electron-
phonon coupling is just one of many possibilities that could
enhance the Higgs-mode effect. These may include phonon
renormalization, impurity scattering, dynamical correlation
effects from the Coulomb interaction, nonlocal correlations
beyond DMFT, etc.

With relevance to the experiment [12], it is interesting
to investigate the temperature dependence of the THG sus-
ceptibility. However, we expect that this strongly depends
on the details of the model, since the model adopted here
only includes a single optical phonon mode, while in realistic
situations acoustic phonons may play an important role at
low temperatures. The temperature dependence may also
be affected by mechanisms of energy dissipation. In this
paper, we have assumed a simple dissipation characterized
by the broadening parameters γ and δ, but it can be more
complicated in real systems. Moreover, the present method has
a numerical instability when γ or δ approaches zero. These
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DMFT. The bubble contribution (�0) and the total susceptibility in-
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tion direction of the laser field is taken to be ↵ = 0.5.
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hibit a conspicuous resonance peak at ⌦ = �. Although the
position and shape of the peak does not change so much be-
tween �0 and �, the peak height does. With the parameters
taken in the present case, the height of � is enhanced as large
as about four times that of �0 due to the resonance with the
Higgs mode. The main contribution comes from �(2)

vc , as can
be seen in Fig. 6. The resonance width of �0 is broadened as
compared to that of �(3)

0 due to the spectral weight of �(5)
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tributed around the peak. The amplitude ratio between �0 and
�vc can depend on various model parameters, but at least there
is such a possibility in a certain realistic parameter regime that
the vertex correction has a non-negligible e↵ect.

We are now in position to make a comparison between the
results of DMFT and BCS theory by calculating the THG
susceptibility within the BCS approximation for the same
parameter set as those of DMFT. The electron-phonon cou-
pling is translated into a static attractive interaction with U =
2g2!0/(!2

0 + �
2) [see Eqs. (9) and (10)]. In the gap equation,

we perform the momentum integral in the range of |✏k|  !0.
The results are depicted in Fig. 8, indicating that the e↵ect
of the vertex correction is rather small compared to the bare
susceptibility �0 in the BCS theory if one considers a general
polarization direction (↵ = 0.5 here). The resonance width
is much sharper and the peak height is higher in BCS than
in DMFT since the THG susceptibility diverges at ⌦ = � in
the � ! 0 limit in BCS theory. These are consistent with
the previous studies.44,49 However, it is far di↵erent from the
result of DMFT (Fig. 7), which takes account of dynamical
correlation e↵ects. This is simply because �(2)

vc is absent in the
BCS approximation, whereas it is generally non-negligible if
one considers the retarded interaction via the electron-phonon
coupling or other e↵ects that are not included in the BCS ap-
proximation (such as impurity scattering, Coulomb interac-
tion, etc.). Our results suggest that one needs to seriously
examine the e↵ect of �(2)

vc , or in other words the contribution

FIG. 8: The intensity of the third-harmonic generation for the super-
conducting phase of the Holstein model calculated within the BCS
approximation. The bubble contribution (�0) and the total suscepti-
bility including the vertex corrections (�0 + �vc) are plotted respec-
tively. The parameters are taken to be the same as in Fig. 5. The
polarization direction of the laser field is taken to be ↵ = 0.5. Note
the di↵erence in the scales of the axes from Fig. 7.

from the resonant diagram [Fig. 1(c)], in further studies of the
THG and other nonlinear optical responses of strongly corre-
lated superconductors.

V. SUMMARY

To summarize, we have studied the nonlinear optical re-
sponse, especially the third-harmonic generation, for electron-
phonon coupled superconductors by means of the dotted
DMFT framework proposed in the present paper. The re-
sults show that, for general polarization of the light, there is
a possibility that the Higgs amplitude mode can contribute to
the THG resonance at 2⌦ = 2� with an order of magnitude
comparable to contributions from the Cooper pair breaking or
charge density fluctuations, which is in sharp contrast to the
BCS result. The interaction between the light and Higgs mode
can be mediated by the resonant coupling, which is induced
by the retarded interaction through the electron-phonon cou-
pling. This is just one of many possibilities that could enhance
the Higgs-mode e↵ect. Others may include phonon renor-
malization, impurity scattering, dynamical correlation e↵ects
from the Coulomb interaction, non-local correlations beyond
DMFT, etc.

To make a relevance to the experiment,12 one is interested in
the temperature dependence of the THG susceptibility. How-
ever, we expect that this strongly depends on the details of
the model, since our model only includes a single mode of
optical phonons while in realistic situations acoustic phonons
may play an important role at low temperatures. The temper-
ature dependence may also be a↵ected by the mechanism of
energy dissipation. In this paper, we have assumed a simple
dissipation characterized by the broadening parameters � and
�, but it can be more complicated in real systems. Moreover,
the present method has a numerical instability when � or � ap-

Summary

• Enhancement of Higgs mode due to the 
phonon retardation effect.
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DMFT CDF+Higgs
CDF

• Strong light-Higgs interaction through the 
resonant coupling.

• Polarization-angle independence of  THG 
resonance in NbN superconductor.

[1] Tsuji, Murakami, Aoki, Phys. Rev. 
B 94, 224519 (2016).
[2] Matsunaga, Tsuji et al., arXiv:
1703.02815. (To be published in 
Phys. Rev. B, Rapid Comm.)

• Dominant contribution to THG from Higgs 
mode rather than from CDF. Exp.

DMFT



Big challenge

• Can we directly observe the Higgs mode by tr-ARPES?

• THz pump(?).  Energy resolution ~ 1meV.

KEMPER, SENTEF, MORITZ, FREERICKS, AND DEVEREAUX PHYSICAL REVIEW B 92, 224517 (2015)

(a)

(f ) (g) (h)

(b) (c) (d) (e)

FIG. 3. (Color online) (a) The tr-ARPES spectrum near the Fermi level in equilibrium. (b)–(e) Spectra at various times after the pump,
illustrating the shift of the spectral weight back and forth across the Fermi level (a movie is available showing this in detail in the Supplemental
Material [38]). The maximum along the red line k = kF , denoted ζ , is shown with a marker. (f) Anomalous density F <(t,t) (see text), which
measures the strength of the superconducting state, and the vector potential [A(t)] as a function of time. The vertical lines indicate the time slices
shown in (a)–(e). The black arrows indicate the direction of the shift of the spectrum from the previous panel. (g) Energy distribution curves
(EDCs) at k = kF [red lines in (a)–(e)] for equilibrium and pumped superconductor (t = 107 fs). The marker indicates the EDC maximum (at
ω = ζ ). (h) False-color plot of EDC intensity as a function of time showing the oscillations after the pump.

To show that the superconductivity remains even though
there is spectral weight in the gap, we consider the “anomalous
density” F<(t,t) ≡

∑
k F<

k (t,t) [in analogy with the normal
density n(t) ≡ −i

∑
k G<

k (t,t)] shown in Fig. 3(f). In equilib-
rium BCS theory, this quantity is related to one side of the gap
equation,

F<
k (t,t ′ = t) = #0

2Ek
tanh

(
Ek

2T

)
, (10)

where Ek =
√

ϵk + #2
0 . After pumping, although the magni-

tude of the order parameter is reduced, superconductivity is
still present. Moreover, F<(t,t) shows the same oscillations
as observed in the spectra. The oscillations occur for long
times after the pump pulse, indicating that they are intrinsic
to the superconducting state, rather than directly related to
particulars of the pump. The snapshots [Figs. 3(c)–3(e)] are
taken at times corresponding to the minima and maxima of the
oscillations.

We further investigate the oscillations by considering the
EDCs at k = kF and analyze the dynamics. Figure 3(g) shows
the EDCs for the equilibrium and pumped superconductor (at
t = 107 fs). After pumping, ζ returns towards the Fermi level,
but not fully. Figure 3(h) shows the EDCs as a function of
time delay. Upon arrival of the pump, the superconductivity is
reduced as spectral weight is scattered to above the Fermi level
and across the Brillouin zone. The band subsequently shifts

back and forth at a particular frequency. This is markedly
different from the normal state, where the spectra after
pumping return monotonically to equilibrium [31] (unless
phonons are resonantly excited or the pump is sufficiently

FIG. 4. (Color online) The position of the EDC maxima ζ (t) for
various pump fluences. The shaded region indicates the times for
which the pump field is on (as defined by 1.5 the field width σ ). Solid
lines are fits to a decaying exponential plus a damped oscillation.
Inset: Fitted oscillation frequencies as a function of pump fluence
(maximum field in V/a0). The solid line is a quadratic polynomial fit.
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Noneq. DMFT calculation: Kemper et al., Phys. Rev. B 92, 224517 (2015).

• We are waiting for the news!


