Higgs amplitude mode and charge density fluctuations in the nonlinear optical response of superconductors

Naoto Tsuji (RIKEN CEMS)

Collaborators

[Theory] Y. Murakami (Fribourg Univ.) H. Aoki (Univ. Tokyo, AIST)

[Experiment] R. Shimano (Univ. Tokyo)
 R. Matsunaga (Univ. Tokyo)
 K. Makise (NICT)
 H. Terai (NICT)

[1] Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016).
[2] Matsunaga, Tsuji, Makise, Terai, Aoki, Shimano, arXiv:1703.02815.
(To be published in Phys. Rev. B, Rapid Communications.)

Outline of the talk

- Introduction: Higgs amplitude mode in superconductors
- Higgs mode vs charge density fluctuation (CDF)
- Experimental discrimination by polarization-resolved THG
- A mechanism of enhancing the light-Higgs coupling — Phonon retardation effect

Outline of the talk

- Introduction: Higgs amplitude mode in superconductors
- Higgs mode vs charge density fluctuation (CDF)
- Experimental discrimination by polarization-resolved THG
- A mechanism of enhancing the light-Higgs coupling — Phonon retardation effect

Collective modes in superconductors

Anderson (1958), Volkov, Kogan (1973), Littlewood, Varma (1981, 1982), ...

- Higgs mode = collective amplitude oscillation of the superfluid density.
- One of the lowest energy excitation modes.
- Universal phenomenon in spontaneous symmetry broken phases

Observation of Higgs mode

• 2H-NbSe₂ (SC+CDW), Raman

week ending 2 AUGUST 2013 VOLUME 45, NUMBER 8 PHYSICAL REVIEW LETTERS 25 August 1980 PHYSICAL REVIEW LETTERS PRL 111, 057002 (2013) Raman Scattering by Superconducting-Gap Excitations and Their Coupling Higgs Amplitude Mode in the BCS Superconductors Nb_{1-r}Ti_rN Induced to Charge-Density Waves by Terahertz Pulse Excitation R. Sooryakumar and M. V. Klein Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Ryusuke Matsunaga,¹ Yuki I. Hamada,¹ Kazumasa Makise,² Yoshinori Uzawa,³ Urbana, Illinois 61801 Hirotaka Terai,² Zhen Wang,² and Ryo Shimano¹ (Received 24 March 1980) ¹Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ²National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492, Japan SAMPLE M 80 α d ³National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan SAMPLE (Received 2 May 2013; published 29 July 2013) SAMPLE B E E 0.8 INTENSITY (counts/sec) 70 (a) τ_{pump}/τ_Δ=0.57 40 0.6 (ZHL) *t* $5E_{\text{probe}}(t_{\text{gate}}=t_0)$ (arb. units) SAMPLE M 50 b ₩Ġ nJ/cm 80 9.6 0.2 8.5 30 ⊖ 7.9 **♦** f ∋ 7.2 40 2Δ. \ominus 6.4 0.0 5.6 Э 3 ⊖ 4.8 10 \ominus 4.0 20 20 60 60 20 60 9 RAMAN SHIFT (cm⁻¹)

0

-4

-2

2

t_{pp} (ps)

4

6

8

0

5

Pump Energy (nJ/cm²)

10

See also Measson et al., PRB 89, 060503 (2014).

• Nb_{1-x}Ti_xN (SC only), THz pump-probe

Light-Higgs coupling

Third-harmonic generation from Higgs

• Current: $j(t) = -\frac{e^{*2}n_s(t)}{m^*}A(t)$ (London equation) $j_{NL}(t) = -\frac{2e^{*2}\Psi_0}{m^*}H(t)A(t)$ $2\omega + \omega = 3\omega$ oscillation

Outline of the talk

• Introduction: Higgs amplitude mode in superconductors

- Higgs mode vs charge density fluctuation (CDF)
- Experimental discrimination by polarization-resolved THG
- A mechanism of enhancing the light-Higgs coupling — Phonon retardation effect

Higgs mode vs CDF

• According to BCS theory, Higgs-mode energy is degenerate with the lower bound of the quasiparticle continuum (2 Δ).

Laser may excite not only Higgs but also charge density fluctuation (CDF).

Polarization dependence of THG

CDF and Higgs have different polarization-angle dependence for THG resonance.
 Cea, Castellani, Benfatto, Phys. Rev. B 93, 180507 (2016)

Polarization dependence of CDF

 In general, CDF has polarization dependence relative to the crystal axis since it depends on the band structure of the material.

 CDF also has a THG component with polarization perpendicular to that of the incoming wave.
 Matsunaga, Tsuji et al., arXiv:1703.02815.

Polarization dependence of Higgs

• Higgs is a scalar boson, and does not have polarization dependence.

$$F = -2aH^{2} + \frac{1}{2m^{*}}(\nabla H)^{2} - \frac{e^{*2}\Psi_{0}^{2}}{2m^{*}}A^{2} + \frac{e^{*2}\Psi_{0}}{m^{*}}A^{2}H + \cdots$$

• Higgs always induces THG with polarization parallel to that of the incoming wave.

General Polarization dependence

Matsunaga, Tsuji et al., arXiv:1703.02815.

	$\boldsymbol{e}_{I} \parallel \boldsymbol{e}_{O}$	$e_{I} \perp e_{O}$
CDF	$A(\omega) + 2B(\omega)\sin^2 2\theta$	$B(\omega)\sin 4\theta$
Higgs	$C(\omega)$	0

Outline of the talk

• Introduction: Higgs amplitude mode in superconductors

• Higgs mode vs charge density fluctuation (CDF)

Experimental discrimination by polarization-resolved THG

 A mechanism of enhancing the light-Higgs coupling — Phonon retardation effect

Polarization-resolved spectroscopy

Matsunaga, Tsuji et al., arXiv:1703.02815.

Polarization dependence of THG

Experiment:

Matsunaga, Tsuji et al., arXiv:1703.02815.

THG intensity is quite isotropic, and does not depend on the polarization.
 It implies that the Higgs is a dominant contribution to THG.

Band structure of NbN

Matsunaga, Tsuji et al., arXiv:1703.02815.

Polarization dependence of THG

Matsunaga, Tsuji et al., arXiv: 1703.02815.

Outline of the talk

- Introduction: Higgs amplitude mode in superconductors
- Higgs mode vs charge density fluctuation (CDF)
- Experimental discrimination by polarization-resolved THG
- A mechanism of enhancing the light-Higgs coupling — Phonon retardation effect

Higgs mode vs CDF

In BCS theory, for a general lattice with a general laser polarization
 CDF has much stronger coupling to light than Higgs.

Cea, Castellani, Benfatto, Phys. Rev. B 93, 180507 (2016)

• Why is the Higgs mode contribution to THG so dominant for NbN?

• NbN is known to have a strong electron-phonon coupling $(\lambda \sim 1)$.

Kihlstrom, Simon, Wolf, PRB 32, 1843 (1985); Bronson et al., PRL 64, 2172 (1990); Chockalingam et al., PRB 77, 214503 (2008).

Is there any mechanism to enhance the light-Higgs coupling?

Retardation effect

Un-retarded pairing

A(t)² non-resonant light-matter coupling

Retarded pairing

resonant light-matter coupling

Optical conductivity BCS (clean limit) Beyond BCS

(a) Diamagnetic term

Model of el-ph system

Holstein model

 $g = 0.8, \omega_0 = 0.6, T = 0.02, \gamma = 0.2, \delta = 0.005$ ($\lambda = 0.77$) Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016)

THG susceptibility (DMFT calc.)

$$g = 0.8, \omega_0 = 0.6, T = 0.02, \gamma = 0.2, \delta = 0.005$$

Polarization: $\alpha = 0.5$

Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016)

Higgs mode can contribute to THG resonance with an order of magnitude comparable or even larger than the contribution of CDF.

Comparison to BCS theory

Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016)

 $g = 0.8, \omega_0 = 0.6, T = 0.02, \gamma = 0.2, \delta = 0.005$ Polarization: $\alpha = 0.5$

In DMFT the Higgs-mode contribution is enhanced due to the retardation effect mediated by phonons, which is in sharp contrast to BCS.

Phonon frequency dependence

 $T = 0.02, \gamma = 0.2, \delta = 0.005, \alpha = 0.5$ Tsuji, Murakami, Aoki, Phys. Rev. B 94, 224519 (2016)

We tune g for each ω_0 such that the superconducting gap is fixed to be $2\Delta \approx 0.12$.

Summary

• Enhancement of Higgs mode due to the phonon retardation effect.

Strong light-Higgs interaction through the resonant coupling.

 Polarization-angle independence of THG resonance in NbN superconductor.

 Dominant contribution to THG from Higgs mode rather than from CDF.

(a)

BPF

WGP3

NbN/MgO

WGP2

WGP'

[1] Tsuji, Murakami, Aoki, Phys. Rev.
B 94, 224519 (2016).
[2] Matsunaga, Tsuji et al., arXiv:
1703.02815. (To be published in Phys. Rev. B, Rapid Comm.)

Big challenge

- Can we directly observe the Higgs mode by tr-ARPES?
 - Noneq. DMFT calculation: Kemper et al., Phys. Rev. B 92, 224517 (2015).

- THz pump(?). Energy resolution ~ ImeV.
- We are waiting for the news!

