

Bulk and surface electronic properties of RERh₂Si₂ compounds (RE = rare-earth element) as observed by ARPES

C. Laubschat, Technische Universität Dresden, Germany

Aknowledgement:

Denis

Vyalikh

San Sebastian

Güttler

Alla Chikina <mark>SLS</mark>

Alexander Generalov Max / Lund

Marc Höppner MPI Stuttgart

Kurt Kummer ESRF

Christoph Geibel MPI CPfS Dresden

Cornelius Krellner Frankfurt

Eugeny Chulkov San Sebastian

RET₂Si₂ compounds (RE = rare-earth, T = Co, Rh, Ir)

YbRh₂Si₂, mean valence ~2,9

YbRh₂Si₂: Analysis within SIAM

• Bulk emission governed by stron $4f^{12}$ final-state multiplet and weak $4f^{13}$ doublet \rightarrow mixed valent, valence 2,93

SIAM-Parameter: Epsilon_f = 0.1 eV, Delta = 0.12 eV, U_{ff} = 6 eV • Surface emission: Purely divalent

YbRh₂Si₂: Yb and Si-termination

- Induced 4f-dispersion due to "avoid crossing" of Rh-4d-band
- Bulk: 4f crystal field splittings + 4f Fermi-level crossing \rightarrow HF system
- Yb surface: No CEF splittings and Fermi-level crossings \rightarrow stable Yb^2+ D.V. Vyalikh, PRL 105, 237601 (2010)

CeRh₂Si₂: Surface termination

а

Sinding energy (eV)

b

Binding energy (eV)

- Surface termination may be determinated by watching the surface state within the large gap of the projected bandstructure around the M-point (marked by star) which only exists at Si-terminated surfaces
- Also the surface resonance at the Γ-point (Dirac cone) is characteristic for Si-termination although there are underlying bulk bands weakly visible also at Ce termination.
- Data taken off-resonance at 112 eV photon energy
- S. Patil et al., Nature Comm. 7, 11029 (2016)

CeRh₂Si₂: Bulk and surface electron structure

• Ce at surface sites: Well defined ionization peak ("4f⁰"), 4f¹ signal only around Γ -point consisting almost of 4f¹_{5/2} component at E_{F.} \Rightarrow weakly hybridized

• Ce in the bulk:

4f⁰-character fully merged ^b into the valence band. Intense $4f_{5/2}^{1}$ emission with crystal field splitting and $4f_{7/2}^{1}$ side band. \Rightarrow strongly hybridized

S. Patil et al., Nature Comm. 7, 11029 (2016)

Different hybridization in the bulk and at the surface

- hybridization ~ hopping probability 4f ↔ valence band f-LDOS
- surface: coordination reduced \rightarrow hopping probability reduced
- surface: f-LDOS near E_F reduced \rightarrow hopping probability reduced
- bulk: f-LDOS large around 2 eV \rightarrow strong hybridization of 4f⁰-state

Simulation within the Single-Impurity Anderson-Model

Parameter: Bulk: Epsilon_f = -1.7 eV, Delta = 1.05 eV, U_{ff} = 6 eV. Surface: Epsilon_f = -1.9 eV, Delta = 0.7 eV (70% from bulk),

 \rightarrow strong "4f¹"-signal for bulk Ce, shift and smearing of weak "4f^{"0}" component \rightarrow weak "4f^{"1}"-signal for Ce at surface, well pronounced "4f"^{"0}" component

Thermochemical model: Valence of rare-earth elements

B. Johansson, Phys. Rev. B20, 1315 (1979)

Valence of rare-earth elements

B. Johansson, Phys. Rev. B20, 1315 (1979)

Valence of rare-earth elements

B. Johansson, Phys. Rev. B20, 1315 (1979)

RERh₂Si₂ compounds: RE = Yb: mixed-valent $E_{BIN} \approx 0 \text{ eV},$ $E_{BIN}^{surf} \approx 0,7 \text{ eV}$

RE = Eu: divalent $E_{BIN} \approx 0.2 \text{ eV},$ $E_{BIN}^{surf} \approx 1.0 \text{ eV}$

Prediction for whole series: All RE except Eu, Yb trivalent in the bulk

and at the surface!

Inclination of lines due to different atomic volumes!

RERh₂Si₂ compounds: RE = Yb: mixed-valent $E_{BIN} \approx 0 \text{ eV},$ $E_{BIN}^{surf} \approx 0,7 \text{ eV}$

 $\begin{array}{l} \mathsf{RE} = \mathsf{Eu: divalent} \\ \mathsf{E}_{\mathsf{BIN}} & \approx 0,2 \; \mathsf{eV}, \\ \mathsf{E}_{\mathsf{BIN}}^{\mathsf{surf}} \approx 1,0 \; \mathsf{eV} \end{array}$

Prediction for whole series: All RE except Eu, Yb trivalent in the bulk and at the surface!

Trivalent in the bulk and at the surface

• Si-termination identified by surface state around M-point

```
A. Chikina et al., PRB 95, 155127 (2017)
```


- Si-termination identified by surface state around M-point
- Bulk and surface spectra dominated by 4f⁴ multiplets
- Clear surface-shift of 4f⁴ multiplet → almost trivalent in the bulk and at the surface Bulk signal broadened by hybridization, surface shift 0.3-1.0 eV

- Si-termination identified by surface state around M-point
- Bulk and surface spectra dominated by 4f⁴ multiplet
- Clear surface-shift of $4f^4$ multiplet \rightarrow almost trivalent in the bulk and at the surface
- Non-dispersive stripe-structure near $E_F \rightarrow additional~4f^5$ multiplet?

shifted 4f⁵ multiplet

- Intensity of individual multiplet terms may be altered due to resonance
- Mixed-valent in the bulk and at the surface with mean valence around 2.9

Sm-valence in SmRh₂Si₂: SIAM

- Neglect of multiplet effects
 and double-excitations
- Estimation of Δ -parameter from interpolation between Ce- and Yb-system Bulk: $\Delta = 0.7 \text{ eV}$
- Assumption: Reduction of ∆ at surface to 70% of bulk value
- Setting $\varepsilon = -E_{BIN}(4f^4)$ Bulk: $\varepsilon = -6.0 \text{ eV}$ Surface: $\varepsilon = -6.3 \text{ eV}$
- With $U_{\rm ff}$ = 7 eV from LDA+U we get for $-E_{\rm BIN}(4f^5) \approx \epsilon + U_{\rm ff}$ Bulk: $E_{\rm BIN}$ = -1.0 eV (-1.1 eV) Surf: $E_{\rm BIN}$ = -0.7 eV (-0.3 eV) thermochemical estimate in parentesis

Result of SIAM:

Bulk:mean Sm-valence:2.94Surface:mean Sm-valence:2.95Behaviorqualitatively similar to Ce!

Why is EuRh₂Si₂ stable divalent?

- Assuming for Eu similar Δ as for Sm and ϵ = 0.2 eV
 - \rightarrow EuRh₂Si₂ should be mixed-valent, mean valence ~2.5!
- Photoemission: No trace of 4f⁵ final-state multiplet characteristic for Eu³⁺

- Hopping directly or via virtual low-energy excitations of 4fn-configurations
- Sm: Strong overlapp of 4f⁵ ⁶F and 4f⁶ ⁷F terms
- Eu: No low-energy excitations possible in $4f^7$ (spin-flip requires $\Delta E > 4 \text{ eV}$) \rightarrow hybridization strongly reduced! **A. Chikina et al., PRB 95, 155127 (2017)**

Summary:

- clear determination of surface termination by inspection of surface state characteristic for Si-termination
- different degree of 4f-hybridization in the bulk and at the surface: YbRh₂Si₂: bulk intermediate valent close Yb³⁺, surface stable divalent CeRh₂Si₂: strongly hybridized in the bulk, weakly at the surface
- estimation of surface valence by means of thermochemical model SmRh₂Si₂: bulk and surface intermediate valent close to Sm³⁺
 - explanation whithin SIAM in analogy to Ce-compounds
 - possible Kondo-phenomena in Sm-compounds ?
 - EuRh₂Si₂: bulk and surface stable divalent, although mixed-valence expected from analogy to Sm-compound
 - strongly reduced hybridization due to lacking low-energy multiplet ?
 - phenomenon generally encountered in Eu-compounds, where in contrast to weak T-dependent valence changes in Yb and Ce-systems strong abrupt 1st-order transitions take place upon T or p-changes